These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37880403)
1. Obtaining bio-oil and activated carbon from waste pomegranate peels by pyrolysis. Alagöz O; Yılmaz N; Dilek M Environ Sci Pollut Res Int; 2023 Nov; 30(54):115037-115049. PubMed ID: 37880403 [TBL] [Abstract][Full Text] [Related]
2. Box-Behnken design with desirability function for methylene blue dye adsorption by microporous activated carbon from pomegranate peel using microwave assisted K Reghioua A; Jawad AH; Selvasembian R; ALOthman ZA; Wilson LD Int J Phytoremediation; 2023; 25(14):1988-2000. PubMed ID: 37291893 [TBL] [Abstract][Full Text] [Related]
3. Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using Parimelazhagan V; Yashwath P; Arukkani Pushparajan D; Carpenter J Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293336 [TBL] [Abstract][Full Text] [Related]
4. Adsorption mechanism and effectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis. Lawal AA; Hassan MA; Ahmad Farid MA; Tengku Yasim-Anuar TA; Samsudin MH; Mohd Yusoff MZ; Zakaria MR; Mokhtar MN; Shirai Y Environ Pollut; 2021 Jan; 269():116197. PubMed ID: 33316496 [TBL] [Abstract][Full Text] [Related]
5. Investigation of effectiveness of pyrolysis products on removal of alizarin yellow GG from aqueous solution: a comparative study with commercial activated carbon. Kaya N; Yildiz Uzun Z Water Sci Technol; 2020 Mar; 81(6):1191-1208. PubMed ID: 32597406 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. Genli N; Kutluay S; Baytar O; Şahin Ö Int J Phytoremediation; 2022; 24(1):88-100. PubMed ID: 34024213 [TBL] [Abstract][Full Text] [Related]
7. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Selvarajoo A; Wong YL; Khoo KS; Chen WH; Show PL Chemosphere; 2022 May; 294():133671. PubMed ID: 35092753 [TBL] [Abstract][Full Text] [Related]
8. The Eco-Friendly Biochar and Valuable Bio-Oil from Wang T; Liu H; Duan C; Xu R; Zhang Z; She D; Zheng J Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751862 [TBL] [Abstract][Full Text] [Related]
9. Pyrolysis of Mixed Date Stones and Pistachio Shells: Identification of Bio-Oil and Utilization of Bio-Char as Activated Carbon Precursor. Ibrahim ALSY; Mahmood SF; Younis ALSA; Fadhil AB Chem Biodivers; 2023 Aug; 20(8):e202300103. PubMed ID: 37462239 [TBL] [Abstract][Full Text] [Related]
10. Syagrus oleracea-activated carbon prepared by vacuum pyrolysis for methylene blue adsorption. Dos Santos KJL; de Souza Dos Santos GE; de Sá ÍMGL; de Carvalho SHV; Soletti JI; Meili L; da Silva Duarte JL; Bispo MD; Dotto GL Environ Sci Pollut Res Int; 2019 Jun; 26(16):16470-16481. PubMed ID: 30982186 [TBL] [Abstract][Full Text] [Related]
11. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater. Nair V; Vinu R Bioresour Technol; 2016 Sep; 216():511-9. PubMed ID: 27268436 [TBL] [Abstract][Full Text] [Related]
12. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A. Arampatzidou AC; Deliyanni EA J Colloid Interface Sci; 2016 Mar; 466():101-12. PubMed ID: 26707777 [TBL] [Abstract][Full Text] [Related]
13. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Thangalazhy-Gopakumar S; Al-Nadheri WMA; Jegarajan D; Sahu JN; Mubarak NM; Nizamuddin S Bioresour Technol; 2015 Feb; 178():65-69. PubMed ID: 25278112 [TBL] [Abstract][Full Text] [Related]
14. Modification of biochar by phosphoric acid Xu J; Fu M; Ma Q; Zhang X; You C; Shi Z; Lin Q; Wang X; Feng W RSC Adv; 2023 May; 13(22):15327-15333. PubMed ID: 37223644 [TBL] [Abstract][Full Text] [Related]
15. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures]. Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244 [TBL] [Abstract][Full Text] [Related]
16. Fruit peel-based mesoporous activated carbon Yousef TA; Sahu UK; Jawad AH; Abd Malek NN; Al Duaij OK; ALOthman ZA Int J Phytoremediation; 2023; 25(9):1142-1154. PubMed ID: 36305491 [TBL] [Abstract][Full Text] [Related]
17. Pyrolytic conversion of human hair to fuel: performance evaluation and kinetic modelling. Krishnakumar P; Sundaramurthy S; Baredar P; Suresh A; Khan MA; Sharma G; Zahmatkesh S; Amesho KTT; Sillanpää M Environ Sci Pollut Res Int; 2023 Dec; 30(60):125104-125116. PubMed ID: 37099105 [TBL] [Abstract][Full Text] [Related]
18. Phosphate adsorption improvement using a novel adsorbent by CaFe/LDH supported onto CO Missau J; Rodrigues MAS; Bertuol DA; Tanabe EH Water Sci Technol; 2022 Nov; 86(9):2396-2414. PubMed ID: 36378188 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Moralı U; Yavuzel N; Şensöz S Bioresour Technol; 2016 Dec; 221():682-685. PubMed ID: 27671342 [TBL] [Abstract][Full Text] [Related]
20. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Angin D; Sensöz S Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]