These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 37880465)

  • 1. A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification.
    Yang C; Zhang H
    Mikrochim Acta; 2023 Oct; 190(11):451. PubMed ID: 37880465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection.
    Yang J; Li G; Chen S; Su X; Xu D; Zhai Y; Liu Y; Hu G; Guo C; Yang HB; Occhipinti LG; Hu FX
    ACS Sens; 2024 Apr; 9(4):1945-1956. PubMed ID: 38530950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Deoxyribozymes into Colorimetric Sensing Platforms.
    Chang D; Zakaria S; Deng M; Allen N; Tram K; Li Y
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of colorimetric sensor arrays to discriminate between pathogenic bacteria.
    Lonsdale CL; Taba B; Queralto N; Lukaszewski RA; Martino RA; Rhodes PA; Lim SH
    PLoS One; 2013; 8(5):e62726. PubMed ID: 23671629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Nanoparticle-Supported Nanozyme-Based Colorimetric Sensor Array for Precise Identification of Proteins and Oral Bacteria.
    Lu Z; Lu N; Xiao Y; Zhang Y; Tang Z; Zhang M
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11156-11166. PubMed ID: 35212535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Colorimetric Sensors Based on Gold Nanoparticles for Pathogen Detection.
    Yang J; Wang X; Sun Y; Chen B; Hu F; Guo C; Yang T
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-mode colorimetric and fluorescence biosensors for the detection of foodborne bacteria.
    Saleh RO; Almajidi YQ; Mansouri S; Hammoud A; Rodrigues P; Mezan SO; Maabreh HG; Deorari M; Shakir MN; Alasheqi MQ
    Clin Chim Acta; 2024 Jan; 553():117741. PubMed ID: 38158002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe-N-C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants.
    Shen L; Khan MA; Wu X; Cai J; Lu T; Ning T; Liu Z; Lu W; Ye D; Zhao H; Zhang J
    Biosens Bioelectron; 2022 Jun; 205():114097. PubMed ID: 35219019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning.
    Faura G; Boix-Lemonche G; Holmeide AK; Verkauskiene R; Volke V; Sokolovska J; Petrovski G
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Assisted Array-Based Biomolecular Sensing Using Surface-Functionalized Carbon Dots.
    Pandit S; Banerjee T; Srivastava I; Nie S; Pan D
    ACS Sens; 2019 Oct; 4(10):2730-2737. PubMed ID: 31529960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and Application of Nanozyme Sensor Arrays.
    Xia J; Li Z; Ding Y; Shah LA; Zhao H; Ye D; Zhang J
    Anal Chem; 2024 May; 96(21):8221-8233. PubMed ID: 38740384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward High Sensitivity: Perspective on Colorimetric Photonic Crystal Sensors.
    Qin M; Li J; Song Y
    Anal Chem; 2022 Jul; 94(27):9497-9507. PubMed ID: 35759455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification.
    Kim H; Seong W; Rha E; Lee H; Kim SK; Kwon KK; Park KH; Lee DH; Lee SG
    Biosens Bioelectron; 2020 Dec; 170():112670. PubMed ID: 33045666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers.
    Du Y; Li B; Wang E
    Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems.
    Norvaiša K; Kielmann M; Senge MO
    Chembiochem; 2020 Jul; 21(13):1793-1807. PubMed ID: 32187831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Optoelectronic Nose.
    Li Z; Suslick KS
    Acc Chem Res; 2021 Feb; 54(4):950-960. PubMed ID: 33332086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric Biosensors Based on Polymer/Gold Hybrid Nanoparticles: Topological Effects of the Polymer Coating.
    Wang R; Schirmer L; Wieduwilt T; Förster R; Schmidt MA; Freudenberg U; Werner C; Fery A; Rossner C
    Langmuir; 2022 Oct; 38(40):12325-12332. PubMed ID: 36154138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optoelectronic nose: "seeing" smells by means of colorimetric sensor arrays.
    Suslick KS
    MRS Bull; 2004 Oct; 29(10):720-5. PubMed ID: 15991401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Chemical Warfare Agents by Colorimetric Sensor Arrays.
    Davidson CE; Dixon MM; Williams BR; Kilper GK; Lim SH; Martino RA; Rhodes P; Hulet MS; Miles RW; Samuels AC; Emanuel PA; Miklos AE
    ACS Sens; 2020 Apr; 5(4):1102-1109. PubMed ID: 32212640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Identification of Oral Cariogenic Bacteria through Colorimetric Sensor Array Based on Single-Atom Nanozymes.
    Zhang Y; Khan MA; Yu Z; Yang W; Zhao H; Ye D; Chen X; Zhang J
    Small; 2024 Jul; ():e2403878. PubMed ID: 39058210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.