These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37881367)

  • 1. Oxidation State and Structure of Fe in Nontronite: From Oxidizing to Reducing Conditions.
    Qian Y; Scheinost AC; Grangeon S; Greneche JM; Hoving A; Bourhis E; Maubec N; Churakov SV; Fernandes MM
    ACS Earth Space Chem; 2023 Oct; 7(10):1868-1881. PubMed ID: 37881367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals.
    Rothwell KA; Pentrak MP; Pentrak LA; Stucki JW; Neumann A
    Environ Sci Technol; 2023 Jul; 57(28):10231-10241. PubMed ID: 37418593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions.
    Zhang N; Tong M; Yuan S
    Sci Total Environ; 2021 Dec; 801():149637. PubMed ID: 34416610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sb(III) and Sb(V) sorption onto Al-rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1.
    Ilgen AG; Trainor TP
    Environ Sci Technol; 2012 Jan; 46(2):843-51. PubMed ID: 22136137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic oxidation of arsenite by bioreduced nontronite.
    Zhao Z; Meng Y; Wang Y; Lin L; Xie F; Luan F
    J Environ Sci (China); 2021 Dec; 110():21-27. PubMed ID: 34593191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.
    Gorski CA; Klüpfel L; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2012 Sep; 46(17):9369-77. PubMed ID: 22827558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.
    Schaefer MV; Gorski CA; Scherer MM
    Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite.
    Liu X; Yuan S; Tong M; Liu D
    Water Res; 2017 Apr; 113():72-79. PubMed ID: 28199864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.
    Soltermann D; Marques Fernandes M; Baeyens B; Dähn R; Joshi PA; Scheinost AC; Gorski CA
    Environ Sci Technol; 2014; 48(15):8688-97. PubMed ID: 24930689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.
    Qafoku O; Pearce CI; Neumann A; Kovarik L; Zhu M; Ilton ES; Bowden ME; Resch CT; Arey BW; Arenholz E; Felmy AR; Rosso KM
    Environ Sci Technol; 2017 Aug; 51(16):9042-9052. PubMed ID: 28703576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.
    Gorski CA; Klüpfel LE; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2013; 47(23):13477-85. PubMed ID: 24219773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation.
    Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R
    Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.
    Zhao L; Dong H; Kukkadapu RK; Zeng Q; Edelmann RE; Pentrák M; Agrawal A
    Environ Sci Technol; 2015 May; 49(9):5493-501. PubMed ID: 25873540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals.
    Nzengung VA; Castillo RM; Gates WP; Mills GL
    Environ Sci Technol; 2001 Jun; 35(11):2244-51. PubMed ID: 11414025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization.
    Zhao Z; Yuan Q; Meng Y; Luan F
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44874-44882. PubMed ID: 35138538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites.
    Hofstetter TB; Neumann A; Schwarzenbach RP
    Environ Sci Technol; 2006 Jan; 40(1):235-42. PubMed ID: 16433357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of Fe(II) species associated with clay minerals.
    Hofstetter TB; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2003 Feb; 37(3):519-28. PubMed ID: 12630467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Oxidation of Fe(II)-Bearing Smectite by Microaerophilic Iron Oxidizer
    Zhou N; Kupper RJ; Catalano JG; Thompson A; Chan CS
    Environ Sci Technol; 2022 Dec; 56(23):17443-17453. PubMed ID: 36417801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.