These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37881441)

  • 41. AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1(BACE1) as a Case Study.
    El-Hachem N; Haibe-Kains B; Khalil A; Kobeissy FH; Nemer G
    Methods Mol Biol; 2017; 1598():391-403. PubMed ID: 28508374
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Hybrid Cuckoo Search and Differential Evolution Approach to Protein⁻Ligand Docking.
    Lin H; Siu SWI
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326669
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4.
    Valdés-Tresanco MS; Valdés-Tresanco ME; Valiente PA; Moreno E
    Biol Direct; 2020 Sep; 15(1):12. PubMed ID: 32938494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina.
    Tanchuk VY; Tanin VO; Vovk AI; Poda G
    Chem Biol Drug Des; 2016 Apr; 87(4):618-25. PubMed ID: 26643167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex.
    Holt PA; Chaires JB; Trent JO
    J Chem Inf Model; 2008 Aug; 48(8):1602-15. PubMed ID: 18642866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speed vs Accuracy: Effect on Ligand Pose Accuracy of Varying Box Size and Exhaustiveness in AutoDock Vina.
    Agarwal R; Smith JC
    Mol Inform; 2023 Feb; 42(2):e2200188. PubMed ID: 36262028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.
    Tai HK; Jusoh SA; Siu SWI
    J Cheminform; 2018 Dec; 10(1):62. PubMed ID: 30552524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SNP2SIM: a modular workflow for standardizing molecular simulation and functional analysis of protein variants.
    McCoy MD; Shivakumar V; Nimmagadda S; Jafri MS; Madhavan S
    BMC Bioinformatics; 2019 Apr; 20(1):171. PubMed ID: 30943891
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving ligand-ranking of AutoDock Vina by changing the empirical parameters.
    Pham TNH; Nguyen TH; Tam NM; Y Vu T; Pham NT; Huy NT; Mai BK; Tung NT; Pham MQ; V Vu V; Ngo ST
    J Comput Chem; 2022 Jan; 43(3):160-169. PubMed ID: 34716930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm.
    Liu Y; Zhao L; Li W; Zhao D; Song M; Yang Y
    J Comput Chem; 2013 Jan; 34(1):67-75. PubMed ID: 22961860
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting.
    Liu Y; Yang X; Gan J; Chen S; Xiao ZX; Cao Y
    Nucleic Acids Res; 2022 Jul; 50(W1):W159-W164. PubMed ID: 35609983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CSAlign and CSAlign-Dock: Structure alignment of ligands considering full flexibility and application to protein-ligand docking.
    Kwon S; Seok C
    Comput Struct Biotechnol J; 2023; 21():1-10. PubMed ID: 36514334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational insight into the phthalocyanine-DNA binding via docking and molecular dynamics simulations.
    Ozalp L; Sağ Erdem S; Yüce-Dursun B; Mutlu Ö; Özbil M
    Comput Biol Chem; 2018 Dec; 77():87-96. PubMed ID: 30245350
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity.
    Luo W; Pei J; Zhu Y
    J Mol Model; 2010 May; 16(5):903-13. PubMed ID: 19823881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of reverse docking for target prediction of marine compounds with anti-tumor activity.
    Chen F; Wang Z; Wang C; Xu Q; Liang J; Xu X; Yang J; Wang C; Jiang T; Yu R
    J Mol Graph Model; 2017 Oct; 77():372-377. PubMed ID: 28950183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina.
    Koebel MR; Schmadeke G; Posner RG; Sirimulla S
    J Cheminform; 2016; 8():27. PubMed ID: 27195023
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RDPSOVina: the random drift particle swarm optimization for protein-ligand docking.
    Li J; Li C; Sun J; Palade V
    J Comput Aided Mol Des; 2022 Jun; 36(6):415-425. PubMed ID: 35532815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.