These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37881448)

  • 1. Coupling of static ultramicromagnetic field with elastic micropillar-structured substrate for cell response.
    Quan Y; Huang Z; Wang Y; Liu Y; Ding S; Zhao Q; Chen X; Li H; Tang Z; Zhou B; Zhou Y
    Mater Today Bio; 2023 Dec; 23():100831. PubMed ID: 37881448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sensitivity Enhanced MWCNT/PDMS Tactile Sensor Using Micropillars and Low Energy Ar⁺ Ion Beam Treatment.
    Azkar Ul Hasan S; Jung Y; Kim S; Jung CL; Oh S; Kim J; Lim H
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26771616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses.
    Nagayama K; Inoue T; Hamada Y; Matsumoto T
    J Biomech; 2017 Dec; 65():194-202. PubMed ID: 29126605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Mesenchymal Stem Cells into a Novel Micropillar Confinement Assay.
    Doolin MT; Stroka KM
    Tissue Eng Part C Methods; 2019 Nov; 25(11):662-676. PubMed ID: 31347455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Collective- and Single-Cell Behaviors on Silicon Micropillar Arrays.
    Jahed Z; Zareian R; Chau YY; Seo BB; West M; Tsui TY; Wen W; Mofrad MR
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23604-13. PubMed ID: 27536959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of organic solvents for recovering collapsed PDMS micropillar arrays.
    Wang D; Ma Z; Tian X
    RSC Adv; 2023 Feb; 13(8):4874-4879. PubMed ID: 36762086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of liquid lithography to form
    Logan Howard R; Wang Y; Allbritton NL
    J Micromech Microeng; 2021 Dec; 31(12):. PubMed ID: 35241878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct application of mechanical stimulation to cell adhesion sites using a novel magnetic-driven micropillar substrate.
    Nagayama K; Inoue T; Hamada Y; Sugita S; Matsumoto T
    Biomed Microdevices; 2018 Sep; 20(4):85. PubMed ID: 30259169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three Dimensional and Homogenous Single Cell Cyclic Stretch within a Magnetic Micropillar Array (mMPA) for a Cell Proliferation Study.
    Gao Y; Zhou B; Wu X; Gao X; Zeng X; Xie J; Wang C; Ye Z; Wan J; Wen W
    ACS Biomater Sci Eng; 2016 Jan; 2(1):65-72. PubMed ID: 33418644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Stiffness and the Elastic Modulus of 3D-Printed Micropillars with Atomic Force Microscopy-Force Spectroscopy.
    Cortelli G; Grob L; Patruno L; Cramer T; Mayer D; Fraboni B; Wolfrum B; de Miranda S
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7602-7609. PubMed ID: 36706051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Graphene Oxide-Incorporated Polydimethylsiloxane Membrane with Hexagonal Micropillars.
    Lin YY; Chien Y; Chuang JH; Chang CC; Yang YP; Lai YH; Lo WL; Chien KH; Huo TI; Wang CY
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferation of epithelial cells on PDMS substrates with micropillars fabricated with different curvature characteristics.
    Ng CK; Yu KN
    Biointerphases; 2012 Dec; 7(1-4):21. PubMed ID: 22589064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-Shell Magnetic Micropillars for Reprogrammable Actuation.
    Ni K; Peng Q; Gao E; Wang K; Shao Q; Huang H; Xue L; Wang Z
    ACS Nano; 2021 Mar; 15(3):4747-4758. PubMed ID: 33617237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Magnetic Micropillar Arrays for Programmable Actuation.
    Wang Z; Wang K; Liang D; Yan L; Ni K; Huang H; Li B; Guo Z; Wang J; Ma X; Tang X; Chen LQ
    Adv Mater; 2020 Jun; 32(25):e2001879. PubMed ID: 32406075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdroplet-based On-Demand Drawing of High Aspect-Ratio Elastomeric Micropillar and Its Contact Sensing Application.
    Li Q; Dhakal R; Kim J
    Sci Rep; 2017 Dec; 7(1):17009. PubMed ID: 29209022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-Size Range and High Robustness Self-Assembly Micropillars for Capturing Microspheres.
    Li M; Jiang L; Li X; Li T; Yi P; Li X; Zhang L; Li L; Wang Z; Zhang X; Wang A; Li J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38684027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropillar arrays as potential drug screens: Inhibition of micropillar-mediated activation of the FAK-Src-paxillin signaling pathway by the CK2 inhibitor CX-4945.
    Kim J; Choi WJ; Moon SH; Jung J; Park JK; Kim SH; Lee JO
    Acta Biomater; 2015 Nov; 27():13-20. PubMed ID: 26318800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Demand Dynamic Chirality Selection in Flower Corolla-like Micropillar Arrays.
    Park JE; Jeon J; Park SJ; Won S; Ku Z; Wie JJ
    ACS Nano; 2022 Nov; 16(11):18101-18109. PubMed ID: 36282603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward physiological conditions for cell analyses: forces of heart muscle cells suspended between elastic micropillars.
    Kajzar A; Cesa CM; Kirchgessner N; Hoffmann B; Merkel R
    Biophys J; 2008 Mar; 94(5):1854-66. PubMed ID: 17981895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.