BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37882287)

  • 1. Rhizobacteria-enhanced drought tolerance and post-drought recovery of creeping bentgrass involving differential modulation of leaf and root metabolism.
    Errickson W; Huang B
    Physiol Plant; 2023; 175(5):e14004. PubMed ID: 37882287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera).
    Li Z; Huang T; Tang M; Cheng B; Peng Y; Zhang X
    Plant Physiol Biochem; 2019 Dec; 145():216-226. PubMed ID: 31707249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (
    Li Z; Peng Y; Huang B
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29857479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera.
    Xu Y; Burgess P; Zhang X; Huang B
    J Exp Bot; 2016 Mar; 67(6):1979-92. PubMed ID: 26889010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera.
    Xu Y; Huang B
    Sci Rep; 2018 Oct; 8(1):15181. PubMed ID: 30315246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.
    Jespersen D; Huang B
    Proteomics; 2015 Feb; 15(4):798-812. PubMed ID: 25407697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.
    Xu C; Sibicky T; Huang B
    Plant Cell Rep; 2010 Jun; 29(6):595-615. PubMed ID: 20361191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation.
    Merewitz EB; Du H; Yu W; Liu Y; Gianfagna T; Huang B
    J Exp Bot; 2012 Feb; 63(3):1315-28. PubMed ID: 22131157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass.
    Jespersen D; Yu J; Huang B
    PLoS One; 2015; 10(3):e0123744. PubMed ID: 25822363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Cytokinin and Nitrogen on Drought Tolerance of Creeping Bentgrass.
    Chang Z; Liu Y; Dong H; Teng K; Han L; Zhang X
    PLoS One; 2016; 11(4):e0154005. PubMed ID: 27099963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Nov; 62(15):5311-33. PubMed ID: 21831843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines Metabolism Interacts with γ-Aminobutyric Acid, Proline and Nitrogen Metabolisms to Affect Drought Tolerance of Creeping Bentgrass.
    Tan M; Hassan MJ; Peng Y; Feng G; Huang L; Liu L; Liu W; Han L; Li Z
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).
    Li Z; Yu J; Peng Y; Huang B
    Physiol Plant; 2017 Jan; 159(1):42-58. PubMed ID: 27507681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance.
    Xu C; Huang B
    J Plant Physiol; 2010 Nov; 167(17):1477-85. PubMed ID: 20674080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.
    Yang Z; Chang Z; Sun L; Yu J; Huang B
    PLoS One; 2014; 9(12):e116283. PubMed ID: 25551443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Effects of Acibenzolar-
    Jespersen D; Yu J; Huang B
    Front Plant Sci; 2017; 8():1224. PubMed ID: 28744300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript Profiling and Gene Identification Involved in the Ethylene Signal Transduction Pathways of Creeping Bentgrass (Agrostis stolonifera) during ISR Response Induced by Butanediol.
    Jiang HY; Zhang JL; Yang JW; Ma HL
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29558428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment.
    Ma Y; Shukla V; Merewitz EB
    PLoS One; 2017; 12(4):e0175848. PubMed ID: 28445484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench.
    Carlson R; Tugizimana F; Steenkamp PA; Dubery IA; Hassen AI; Labuschagne N
    Microbiol Res; 2020 Feb; 232():126388. PubMed ID: 31865223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses.
    Chen Y; Hu B; Tan Z; Liu J; Yang Z; Li Z; Huang B
    Plant Cell Rep; 2015 Oct; 34(10):1825-34. PubMed ID: 26179072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.