These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37882312)
1. Germination of aged oat seeds associated with changes in antioxidant enzyme activity and storage compounds mobilization. Yi K; Yue J; Yang S; Jiang Y; Hong L; Zeng H; Wei K; Mao P; Sun Y; Dou L; Li M Physiol Plant; 2023; 175(5):e14020. PubMed ID: 37882312 [TBL] [Abstract][Full Text] [Related]
2. Cytological structures and physiological and biochemical characteristics of covered oat (Avena sativa L.) and naked oat (Avena nuda L.) seeds during high-temperature artificial aging. Yao R; Liu H; Wang J; Shi S; Zhao G; Zhou X BMC Plant Biol; 2024 Jun; 24(1):530. PubMed ID: 38862888 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents. Xia F; Wang X; Li M; Mao P Plant Physiol Biochem; 2015 Sep; 94():122-9. PubMed ID: 26079285 [TBL] [Abstract][Full Text] [Related]
4. Comparative Time-Course Physiological Responses and Proteomic Analysis of Melatonin Priming on Promoting Germination in Aged Oat ( Yan H; Mao P Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467472 [TBL] [Abstract][Full Text] [Related]
5. Melatonin Priming Alleviates Aging-Induced Germination Inhibition by Regulating β-oxidation, Protein Translation, and Antioxidant Metabolism in Oat ( Yan H; Jia S; Mao P Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32164355 [TBL] [Abstract][Full Text] [Related]
6. Nitric Oxide Regulates Seedling Growth and Mitochondrial Responses in Aged Oat Seeds. Mao C; Zhu Y; Cheng H; Yan H; Zhao L; Tang J; Ma X; Mao P Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29614792 [TBL] [Abstract][Full Text] [Related]
7. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. Xia F; Cheng H; Chen L; Zhu H; Mao P; Wang M BMC Plant Biol; 2020 Mar; 20(1):104. PubMed ID: 32138669 [TBL] [Abstract][Full Text] [Related]
8. Changes in low-molecular-weight thiol-disulphide redox couples are part of bread wheat seed germination and early seedling growth. Gerna D; Roach T; Stöggl W; Wagner J; Vaccino P; Limonta M; Kranner I Free Radic Res; 2017 Jun; 51(6):568-581. PubMed ID: 28580817 [TBL] [Abstract][Full Text] [Related]
9. Oat germination and ultrafiltration process improves the polyphenol and avenanthramide contents with protective effect in oxidative-damaged HepG2 cells. Lee JH; Lee BK; Park HH; Lee BW; Woo KS; Kim HJ; Han SI; Lee YY J Food Biochem; 2019 Apr; 43(4):e12799. PubMed ID: 31353574 [TBL] [Abstract][Full Text] [Related]
10. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings. Romero-Rodríguez MC; Jorrín-Novo JV; Castillejo MA J Proteomics; 2019 Apr; 197():60-70. PubMed ID: 30408563 [TBL] [Abstract][Full Text] [Related]
11. Genome-Wide Analysis and Expression Profiling of Glutathione Reductase Gene Family in Oat ( Sun M; Sun S; Jia Z; Ma W; Mao C; Ou C; Wang J; Zhang H; Hong L; Li M; Jia S; Mao P Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232950 [TBL] [Abstract][Full Text] [Related]
12. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. Cembrowska-Lech D; Koprowski M; Kępczyński J J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514 [TBL] [Abstract][Full Text] [Related]
14. Integrated physiology and proteome analysis of embryo and endosperm highlights complex metabolic networks involved in seed germination in wheat (Triticum aestivum L.). Liu Y; Han C; Deng X; Liu D; Liu N; Yan Y J Plant Physiol; 2018 Oct; 229():63-76. PubMed ID: 30041047 [TBL] [Abstract][Full Text] [Related]
15. Investigating seed dormancy in cotton (Gossypium hirsutum L.): understanding the physiological changes in embryo during after-ripening and germination. Wang LR; Yang XN; Gao YS; Zhang XY; Hu W; Zhou Z; Meng YL Plant Biol (Stuttg); 2019 Sep; 21(5):911-919. PubMed ID: 31077623 [TBL] [Abstract][Full Text] [Related]
16. Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism. Huang YT; Wu W; Zou WX; Wu HP; Cao DD J Zhejiang Univ Sci B; 2020 Oct.; 21(10):796-810. PubMed ID: 33043645 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant response and related gene expression in aged oat seed. Kong L; Huo H; Mao P Front Plant Sci; 2015; 6():158. PubMed ID: 25852711 [TBL] [Abstract][Full Text] [Related]
18. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Han C; Zhen S; Zhu G; Bian Y; Yan Y Plant Physiol Biochem; 2017 Jun; 115():320-327. PubMed ID: 28415032 [TBL] [Abstract][Full Text] [Related]
19. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Bhardwaj J; Anand A; Nagarajan S Plant Physiol Biochem; 2012 Aug; 57():67-73. PubMed ID: 22683465 [TBL] [Abstract][Full Text] [Related]
20. Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. Pergo EM; Ishii-Iwamoto EL J Chem Ecol; 2011 May; 37(5):500-13. PubMed ID: 21503619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]