These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37882443)

  • 41. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations.
    Liu G; Wang H; Gao Y; Zhou J; Wang H
    Phys Chem Chem Phys; 2017 Jan; 19(4):2843-2849. PubMed ID: 28067931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations.
    Contreras R; Celentano D; Luo T; Liu Z; Morales-Ferreiro JO
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anisotropic lattice thermal conductivity in three-fold degeneracy topological semimetal MoP: a first-principles study.
    Guo SD
    J Phys Condens Matter; 2017 Nov; 29(43):435704. PubMed ID: 28853714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G
    RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimizing metal/n-AlGaN contact by recessed AlGaN heterostructure with a polarization effect.
    Chen Y; Jiang K; Sun X; Zhang ZH; Zhang S; Ben J; Wang B; Guo L; Li D
    Nanoscale Adv; 2023 May; 5(9):2530-2536. PubMed ID: 37143800
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel insights into lattice thermal transport in nanocrystalline Mg
    Chang Z; Zheng J; Jing Y; Li W; Yuan K; Ma J; Gao Y; Zhang X; Hu M; Yang J; Tang D
    Phys Chem Chem Phys; 2022 Sep; 24(35):20891-20900. PubMed ID: 36043514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations.
    Sun Z; Yuan K; Zhang X; Tang D
    Phys Chem Chem Phys; 2018 Dec; 20(48):30331-30339. PubMed ID: 30488067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices.
    Liu WL; Borca-Tasciuc T; Chen G; Liu JL; Wang KL
    J Nanosci Nanotechnol; 2001 Mar; 1(1):39-42. PubMed ID: 12914029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strong interfacial interactions induced a large reduction in lateral thermal conductivity of transition-metal dichalcogenide superlattices.
    Zhang W; Yang JY; Liu L
    RSC Adv; 2019 Jan; 9(3):1387-1393. PubMed ID: 35518039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultra-high thermal conductivity of two-dimensional C
    Wang H; Gao C; Peng B; Wu J; Wang X; Wei D; Tan L; Qin Z; Qin G
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36779917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anisotropic thermal conductivity of AlGaN/GaN superlattices.
    Filatova-Zalewska A; Litwicki Z; Moszak K; Olszewski W; Opołczyńska K; Pucicki D; Serafińczuk J; Hommel D; Jeżowski A
    Nanotechnology; 2021 Feb; 32(7):075707. PubMed ID: 33120365
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of hydrogenation on the thermal conductivity of 2D gallium nitride.
    Cai X; Sun G; Xu Y; Ma J; Xu D
    Phys Chem Chem Phys; 2021 Oct; 23(39):22423-22429. PubMed ID: 34585691
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct Evidence on Effect of Oxygen Dissolution on Thermal and Electrical Conductivity of AlN Ceramics Using Al Solid-State NMR Analysis.
    Kim J; Kim JY; Ahn H; Jeong MH; Lee E; Cho K; Lee SM; Shim W; Pee JH
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431611
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anisotropic Phononic and Electronic Thermal Transport in BeN
    Tong Z; Pecchia A; Yam C; Zhou L; Dumitrică T; Frauenheim T
    J Phys Chem Lett; 2022 May; 13(20):4501-4505. PubMed ID: 35575731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal properties of amorphous/crystalline silicon superlattices.
    France-Lanord A; Merabia S; Albaret T; Lacroix D; Termentzidis K
    J Phys Condens Matter; 2014 Sep; 26(35):355801. PubMed ID: 25105883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anisotropy of the thermal conductivity in GaAs/AlAs superlattices.
    Luckyanova MN; Johnson JA; Maznev AA; Garg J; Jandl A; Bulsara MT; Fitzgerald EA; Nelson KA; Chen G
    Nano Lett; 2013 Sep; 13(9):3973-7. PubMed ID: 23952943
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strain- and surface-induced modification of photoluminescence from self-assembled GaN/Al0.5Ga0.5N quantum dots: strong effect of capping layer and atmospheric condition.
    Kim JH; Elmaghraoui D; Leroux M; Korytov M; Vennéguès P; Jaziri S; Brault J; Cho YH
    Nanotechnology; 2014 Aug; 25(30):305703. PubMed ID: 25008561
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals.
    Wei Z; Wehmeyer G; Dames C; Chen Y
    Nanoscale; 2016 Oct; 8(37):16612-20. PubMed ID: 27424558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural, Surface and Optical Studies of m- and c-Face AlN Crystals Grown by Physical Vapor Transport Method.
    Zhang S; Yang H; Wang L; Cheng H; Lu H; Yang Y; Wan L; Xu G; Feng ZC; Klein B; Ferguson IT; Sun W
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.