These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Flocking with discrete symmetry: The two-dimensional active Ising model. Solon AP; Tailleur J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042119. PubMed ID: 26565180 [TBL] [Abstract][Full Text] [Related]
4. Flocking with a q-fold discrete symmetry: Band-to-lane transition in the active Potts model. Mangeat M; Chatterjee S; Paul R; Rieger H Phys Rev E; 2020 Oct; 102(4-1):042601. PubMed ID: 33212593 [TBL] [Abstract][Full Text] [Related]
5. Signatures of irreversibility in microscopic models of flocking. Ferretti F; Grosse-Holz S; Holmes C; Shivers JL; Giardina I; Mora T; Walczak AM Phys Rev E; 2022 Sep; 106(3-1):034608. PubMed ID: 36266796 [TBL] [Abstract][Full Text] [Related]
6. Pattern formation in flocking models: A hydrodynamic description. Solon AP; Caussin JB; Bartolo D; Chaté H; Tailleur J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062111. PubMed ID: 26764636 [TBL] [Abstract][Full Text] [Related]
10. Ordering kinetics in the active Ising model. Bandyopadhyay S; Chatterjee S; Dutta AK; Karmakar M; Rieger H; Paul R Phys Rev E; 2024 Jun; 109(6-1):064143. PubMed ID: 39020881 [TBL] [Abstract][Full Text] [Related]
11. Self-regulation in self-propelled nematic fluids. Baskaran A; Marchetti MC Eur Phys J E Soft Matter; 2012 Sep; 35(9):95. PubMed ID: 23053844 [TBL] [Abstract][Full Text] [Related]
12. Fluctuations and pattern formation in self-propelled particles. Mishra S; Baskaran A; Marchetti MC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061916. PubMed ID: 20866449 [TBL] [Abstract][Full Text] [Related]
13. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers. Snezhko A J Phys Condens Matter; 2011 Apr; 23(15):153101. PubMed ID: 21436505 [TBL] [Abstract][Full Text] [Related]
14. Order-disorder transition in repulsive self-propelled particle systems. Hiraoka T; Shimada T; Ito N Phys Rev E; 2016 Dec; 94(6-1):062612. PubMed ID: 28085368 [TBL] [Abstract][Full Text] [Related]
15. Energy Cost for Flocking of Active Spins: The Cusped Dissipation Maximum at the Flocking Transition. Yu Q; Tu Y Phys Rev Lett; 2022 Dec; 129(27):278001. PubMed ID: 36638284 [TBL] [Abstract][Full Text] [Related]
16. Hohenberg-Mermin-Wagner-Type Theorems for Equilibrium Models of Flocking. Tasaki H Phys Rev Lett; 2020 Nov; 125(22):220601. PubMed ID: 33315454 [TBL] [Abstract][Full Text] [Related]
17. Quantitative kinetic theory of flocking with three-particle closure. Kürsten R; Ihle T Phys Rev E; 2021 Sep; 104(3-1):034604. PubMed ID: 34654183 [TBL] [Abstract][Full Text] [Related]
18. Field theories and exact stochastic equations for interacting particle systems. Andreanov A; Biroli G; Bouchaud JP; Lefèvre A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030101. PubMed ID: 17025576 [TBL] [Abstract][Full Text] [Related]
19. Emergence of Collective Motion in a Model of Interacting Brownian Particles. Dossetti V; Sevilla FJ Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444 [TBL] [Abstract][Full Text] [Related]