These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
573 related articles for article (PubMed ID: 37883174)
1. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
2. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis. Adeoye J; Hui L; Koohi-Moghadam M; Tan JY; Choi SW; Thomson P Int J Med Inform; 2022 Jan; 157():104635. PubMed ID: 34800847 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Jiao Y; Ye J; Zhao W; Fan Z; Kou Y; Guo S; Chao M; Fan C; Ji P; Liu J; Zhai Y; Wang Y; Wang N; Wang L Comput Biol Med; 2024 Nov; 182():109185. PubMed ID: 39341114 [TBL] [Abstract][Full Text] [Related]
4. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study. Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504 [TBL] [Abstract][Full Text] [Related]
5. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis. Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y Front Oncol; 2022; 12():967758. PubMed ID: 36072795 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
7. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database. Sun H; Wu S; Li S; Jiang X Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699 [TBL] [Abstract][Full Text] [Related]
8. Explainable machine learning predicts survival of retroperitoneal liposarcoma: A study based on the SEER database and external validation in China. Wang M; Li Z; Zeng S; Wang Z; Ying Y; He W; Zhang Z; Wang H; Xu C Cancer Med; 2024 Jun; 13(11):e7324. PubMed ID: 38847519 [TBL] [Abstract][Full Text] [Related]
9. [Application value of machine learning algorithms for predicting recurrence after resection of early-stage hepatocellular carcinoma]. Ji GW; Wang K; Xia YX; Li XC; Wang XH Zhonghua Wai Ke Za Zhi; 2021 Aug; 59(8):679-685. PubMed ID: 34192861 [No Abstract] [Full Text] [Related]
10. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis. Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma. Xu L; Cai L; Zhu Z; Chen G BMC Endocr Disord; 2023 Jun; 23(1):129. PubMed ID: 37291551 [TBL] [Abstract][Full Text] [Related]
12. Development of machine learning prognostic models for overall survival of prostate cancer patients with lymph node-positive. Peng ZH; Tian JH; Chen BH; Zhou HB; Bi H; He MX; Li MR; Zheng XY; Wang YW; Chong T; Li ZL Sci Rep; 2023 Oct; 13(1):18424. PubMed ID: 37891423 [TBL] [Abstract][Full Text] [Related]
13. Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases? Pan YT; Lin YP; Yen HK; Yen HH; Huang CC; Hsieh HC; Janssen S; Hu MH; Lin WH; Groot OQ Clin Orthop Relat Res; 2024 Sep; 482(9):1710-1721. PubMed ID: 38517402 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study. Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583 [TBL] [Abstract][Full Text] [Related]
15. Application value of the automated machine learning model based on modified CT index combined with serological indices in the early prediction of lung cancer. Meng L; Zhu P; Xia K Front Public Health; 2024; 12():1368217. PubMed ID: 38645446 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders. Adeoye J; Koohi-Moghadam M; Lo AWI; Tsang RK; Chow VLY; Zheng LW; Choi SW; Thomson P; Su YX Cancers (Basel); 2021 Dec; 13(23):. PubMed ID: 34885164 [TBL] [Abstract][Full Text] [Related]
17. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model. Kim Y; Kim KH; Park J; Yoon HI; Sung W Radiother Oncol; 2023 Jun; 183():109617. PubMed ID: 36921767 [TBL] [Abstract][Full Text] [Related]
18. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma. Li X; Bao H; Shi Y; Zhu W; Peng Z; Yan L; Chen J; Shu X Medicine (Baltimore); 2023 Nov; 102(45):e35892. PubMed ID: 37960763 [TBL] [Abstract][Full Text] [Related]
19. Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm. Huang CC; Peng KP; Hsieh HC; Groot OQ; Yen HK; Tsai CC; Karhade AV; Lin YP; Kao YT; Yang JJ; Dai SH; Huang CC; Chen CW; Yen MH; Xiao FR; Lin WH; Verlaan JJ; Schwab JH; Hsu FM; Wong T; Yang RS; Yang SH; Hu MH Clin Orthop Relat Res; 2024 Jan; 482(1):143-157. PubMed ID: 37306629 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty. Oosterhoff JHF; de Hond AAH; Peters RM; van Steenbergen LN; Sorel JC; Zijlstra WP; Poolman RW; Ring D; Jutte PC; Kerkhoffs GMMJ; Putter H; Steyerberg EW; Doornberg JN; Clin Orthop Relat Res; 2024 Aug; 482(8):1472-1482. PubMed ID: 38470976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]