These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37883284)

  • 1. Neural Correlation of EEG and Eye Movement in Natural Grasping Intention Estimation.
    Lin C; Zhang C; Xu J; Liu R; Leng Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4329-4337. PubMed ID: 37883284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting intention to grasp during reaching movements from EEG.
    Randazzo L; Iturrate I; Chavarriaga R; Leeb R; Del Millan JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1115-8. PubMed ID: 26736461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online detection of movement during natural and self-initiated reach-and-grasp actions from EEG signals.
    Pereira J; Kobler R; Ofner P; Schwarz A; Müller-Putz GR
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.
    Bai O; Lin P; Vorbach S; Li J; Furlani S; Hallett M
    Clin Neurophysiol; 2007 Dec; 118(12):2637-55. PubMed ID: 17967559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding Different Reach-and-Grasp Movements Using Noninvasive Electroencephalogram.
    Xu B; Zhang D; Wang Y; Deng L; Wang X; Wu C; Song A
    Front Neurosci; 2021; 15():684547. PubMed ID: 34650398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework.
    Cho JH; Jeong JH; Lee SW
    IEEE Trans Cybern; 2022 Dec; 52(12):13279-13292. PubMed ID: 34748509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasp detection from human ECoG during natural reach-to-grasp movements.
    Pistohl T; Schmidt TS; Ball T; Schulze-Bonhage A; Aertsen A; Mehring C
    PLoS One; 2013; 8(1):e54658. PubMed ID: 23359537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding Synergy-Based Hand Movements using Electroencephalography.
    Patel V; Burns M; Pei D; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4816-4819. PubMed ID: 30441424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global cortical activity predicts shape of hand during grasping.
    Agashe HA; Paek AY; Zhang Y; Contreras-Vidal JL
    Front Neurosci; 2015; 9():121. PubMed ID: 25914616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical decoding of grasping commands from EEG.
    Omedes J; Schwarz A; Montesano L; Muller-Putz G
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2085-2088. PubMed ID: 29060307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-EMG hybrid real-time classification of hand grasp and release movements intention in chronic stroke patients.
    Jo S; Jung JH; Yang MJ; Lee Y; Jang SJ; Feng J; Heo SH; Kim J; Shin JH; Jeong J; Park HS
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural grasping movement recognition and force estimation using electromyography.
    Xu B; Zhang K; Yang X; Liu D; Hu C; Li H; Song A
    Front Neurosci; 2022; 16():1020086. PubMed ID: 36340765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.
    Eilbeigi E; Setarehdan SK
    Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals.
    Agashe HA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5444-7. PubMed ID: 22255569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parkinson's disease patients show impaired corrective grasp control and eye-hand coupling when reaching to grasp virtual objects.
    Lukos JR; Snider J; Hernandez ME; Tunik E; Hillyard S; Poizner H
    Neuroscience; 2013 Dec; 254():205-21. PubMed ID: 24056196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Information for Grasping from the Macaque Dorsomedial Visual Stream.
    Filippini M; Breveglieri R; Akhras MA; Bosco A; Chinellato E; Fattori P
    J Neurosci; 2017 Apr; 37(16):4311-4322. PubMed ID: 28320845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding individual finger movements from one hand using human EEG signals.
    Liao K; Xiao R; Gonzalez J; Ding L
    PLoS One; 2014; 9(1):e85192. PubMed ID: 24416360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.