These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37883287)

  • 1. Enhanced Motor Imagery Decoding by Calibration Model-Assisted With Tactile ERD.
    Zhong Y; Yao L; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4295-4305. PubMed ID: 37883287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tactile Sensation Assisted Motor Imagery Training for Enhanced BCI Performance: A Randomized Controlled Study.
    Zhong Y; Yao L; Wang J; Wang Y
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):694-702. PubMed ID: 36001509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Subject Motor Imagery Decoding by Transfer Learning of Tactile ERD.
    Zhong Y; Yao L; Pan G; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():662-671. PubMed ID: 38271166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing the Calibration Time in Somatosensory BCI by Using Tactile ERD.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1870-1876. PubMed ID: 35767500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion.
    Yao L; Meng J; Sheng X; Zhang D; Zhu X
    J Neural Eng; 2015 Feb; 12(1):016005. PubMed ID: 25461477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Brain-Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):60-68. PubMed ID: 29324403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery.
    Ahn S; Ahn M; Cho H; Chan Jun S
    J Neural Eng; 2014 Dec; 11(6):066004. PubMed ID: 25307730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation.
    Benzy VK; Vinod AP; Subasree R; Alladi S; Raghavendra K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3051-3062. PubMed ID: 33211662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1689-1695. PubMed ID: 29028186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular electrical stimulation induced brain patterns to decode motor imagery.
    Vidaurre C; Pascual J; Ramos-Murguialday A; Lorenz R; Blankertz B; Birbaumer N; Müller KR
    Clin Neurophysiol; 2013 Sep; 124(9):1824-34. PubMed ID: 23642833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical activation and BCI performance during brief tactile imagery: A comparative study with motor imagery.
    Sengupta P; Lakshminarayanan K
    Behav Brain Res; 2024 Feb; 459():114760. PubMed ID: 37979923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface.
    Azab AM; Mihaylova L; Ang KK; Arvaneh M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1352-1359. PubMed ID: 31217122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Variation of a Somatosensory BCI Based on Imagined Sensation: A Large Population Study.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2486-2493. PubMed ID: 35969546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.