BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37883330)

  • 1. Atmospheric Oxygen Facilitated Oxidative Amidation to α-Ketoamides and Unusual One Carbon Degradative Amidation to
    Jadav JP; Vankar JK; Gupta A; Gururaja GN
    J Org Chem; 2023 Nov; 88(22):15551-15561. PubMed ID: 37883330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of aliphatic α-ketoamides from α-substituted methyl ketones
    Cha H; Chai JY; Kim HB; Chi DY
    Org Biomol Chem; 2021 May; 19(19):4320-4326. PubMed ID: 33904536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-free oxidative amidation of 2-oxoaldehydes: a facile access to α-ketoamides.
    Mupparapu N; Khan S; Battula S; Kushwaha M; Gupta AP; Ahmed QN; Vishwakarma RA
    Org Lett; 2014 Feb; 16(4):1152-5. PubMed ID: 24490591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dioxygen activation under ambient conditions: Cu-catalyzed oxidative amidation-diketonization of terminal alkynes leading to alpha-ketoamides.
    Zhang C; Jiao N
    J Am Chem Soc; 2010 Jan; 132(1):28-9. PubMed ID: 20000433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition Metal-Catalyzed Regioselective Direct C-H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions.
    Du B; Chan CM; Au CM; Yu WY
    Acc Chem Res; 2022 Aug; 55(15):2123-2137. PubMed ID: 35853135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base-Promoted Tandem Pathway for Keto-Amides: Visible Light-Mediated Room-Temperature Amidation Using Molecular Oxygen as an Oxidant.
    Das S; Mondal S; Midya SP; Mondal S; Ghosh E; Ghosh P
    J Org Chem; 2023 Nov; 88(21):14847-14859. PubMed ID: 37867455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general metal free approach to α-ketoamides via oxidative amidation-diketonization of terminal alkynes.
    Deshidi R; Kumar M; Devari S; Shah BA
    Chem Commun (Camb); 2014 Aug; 50(67):9533-5. PubMed ID: 25012193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct use of formamides as amino group sources via C-N bond cleavage: a catalytic oxidative synthesis of α-ketoamides from acetophenones and formamides under metal-free conditions.
    Zhao Q; Miao T; Zhang X; Zhou W; Wang L
    Org Biomol Chem; 2013 Mar; 11(11):1867-73. PubMed ID: 23381643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formamidine hydrochloride as an amino surrogate: I2-catalyzed oxidative amidation of aryl methyl ketones leading to free (N-H) α-ketoamides.
    Liu S; Gao Q; Wu X; Zhang J; Ding K; Wu A
    Org Biomol Chem; 2015 Feb; 13(8):2239-42. PubMed ID: 25587673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. I
    Zhuang SY; Tang YX; Chen XL; Wu YD; Wu AX
    Org Biomol Chem; 2021 May; 19(19):4258-4262. PubMed ID: 33890609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative coupling of methylamine with an aminyl radical: direct amidation catalyzed by I2/TBHP with HCl.
    Gao L; Tang H; Wang Z
    Chem Commun (Camb); 2014 Apr; 50(31):4085-8. PubMed ID: 24618846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methionine-associated peptide α-amidation is directed both to the N- and the C-terminal amino acids.
    Sajapin J; Kulas A; Hellwig M
    J Pept Sci; 2022 Nov; 28(11):e3429. PubMed ID: 35694817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical C-H Amidation of Heteroarenes with N-Alkyl Sulfonamides in Aqueous Medium.
    Zhang Y; Lin Z; Ackermann L
    Chemistry; 2021 Jan; 27(1):242-246. PubMed ID: 33085807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative Amidation of Nitroalkanes with Amine Nucleophiles using Molecular Oxygen and Iodine.
    Li J; Lear MJ; Kawamoto Y; Umemiya S; Wong AR; Kwon E; Sato I; Hayashi Y
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12986-90. PubMed ID: 26349836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Developments in General Methodologies for the Synthesis of α-Ketoamides.
    De Risi C; Pollini GP; Zanirato V
    Chem Rev; 2016 Mar; 116(5):3241-305. PubMed ID: 26881454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Synthesis of
    Li Y; Zhong P; Zhao J; Pan Z; Zhang C; Cui D
    Molecules; 2023 May; 28(11):. PubMed ID: 37298814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides.
    Ghosh SC; Ngiam JS; Seayad AM; Tuan DT; Chai CL; Chen A
    J Org Chem; 2012 Sep; 77(18):8007-15. PubMed ID: 22894712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine-TBHP mediated efficient synthesis of α-ketoamides from vinyl azides and amines under mild conditions.
    Bhukta S; Chatterjee R; Dandela R
    Org Biomol Chem; 2022 May; 20(19):3907-3912. PubMed ID: 35502880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen.
    Liang YF; Jiao N
    Acc Chem Res; 2017 Jul; 50(7):1640-1653. PubMed ID: 28636366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.