BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37883436)

  • 1. DNA language models are powerful predictors of genome-wide variant effects.
    Benegas G; Batra SS; Song YS
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2311219120. PubMed ID: 37883436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPN-MSA: an alignment-based DNA language model for genome-wide variant effect prediction.
    Benegas G; Albors C; Aw AJ; Ye C; Song YS
    bioRxiv; 2024 Apr; ():. PubMed ID: 37873118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence.
    Chen L; Wang Y; Zhao F
    Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog.
    Togninalli M; Seren Ü; Meng D; Fitz J; Nordborg M; Weigel D; Borgwardt K; Korte A; Grimm DG
    Nucleic Acids Res; 2018 Jan; 46(D1):D1150-D1156. PubMed ID: 29059333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Association Studies in Arabidopsis thaliana: Statistical Analysis and Network-Based Augmentation of Signals.
    Lee T; Lee I
    Methods Mol Biol; 2021; 2200():187-210. PubMed ID: 33175379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational prediction of novel non-coding RNAs in Arabidopsis thaliana.
    Song D; Yang Y; Yu B; Zheng B; Deng Z; Lu BL; Chen X; Jiang T
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S36. PubMed ID: 19208137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide prediction of nucleosome occupancy in maize reveals plant chromatin structural features at genes and other elements at multiple scales.
    Fincher JA; Vera DL; Hughes DD; McGinnis KM; Dennis JH; Bass HW
    Plant Physiol; 2013 Jun; 162(2):1127-41. PubMed ID: 23572549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-assisted prediction of protein-protein interactions in Arabidopsis thaliana.
    Zheng J; Yang X; Huang Y; Yang S; Wuchty S; Zhang Z
    Plant J; 2023 May; 114(4):984-994. PubMed ID: 36919205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomic analysis using the UCSC genome browser.
    Karolchik D; Bejerano G; Hinrichs AS; Kuhn RM; Miller W; Rosenbloom KR; Zweig AS; Haussler D; Kent WJ
    Methods Mol Biol; 2007; 395():17-34. PubMed ID: 17993665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AraPheno and the AraGWAS Catalog 2020: a major database update including RNA-Seq and knockout mutation data for Arabidopsis thaliana.
    Togninalli M; Seren Ü; Freudenthal JA; Monroe JG; Meng D; Nordborg M; Weigel D; Borgwardt K; Korte A; Grimm DG
    Nucleic Acids Res; 2020 Jan; 48(D1):D1063-D1068. PubMed ID: 31642487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AtMAD: Arabidopsis thaliana multi-omics association database.
    Lan Y; Sun R; Ouyang J; Ding W; Kim MJ; Wu J; Li Y; Shi T
    Nucleic Acids Res; 2021 Jan; 49(D1):D1445-D1451. PubMed ID: 33219693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein-Friesian cattle.
    Veerkamp RF; Bouwman AC; Schrooten C; Calus MP
    Genet Sel Evol; 2016 Dec; 48(1):95. PubMed ID: 27905878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic variations and distinct evolutionary rate of rare alleles in Arabidopsis thaliana.
    Memon S; Jia X; Gu L; Zhang X
    BMC Evol Biol; 2016 Jan; 16():25. PubMed ID: 26817829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases.
    Alsheikh AJ; Wollenhaupt S; King EA; Reeb J; Ghosh S; Stolzenburg LR; Tamim S; Lazar J; Davis JW; Jacob HJ
    BMC Med Genomics; 2022 Apr; 15(1):74. PubMed ID: 35365203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DrivR-Base: a feature extraction toolkit for variant effect prediction model construction.
    Francis A; Campbell C; Gaunt TR
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38603611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating diverse datasets improves developmental enhancer prediction.
    Erwin GD; Oksenberg N; Truty RM; Kostka D; Murphy KK; Ahituv N; Pollard KS; Capra JA
    PLoS Comput Biol; 2014 Jun; 10(6):e1003677. PubMed ID: 24967590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks.
    Kelley DR; Snoek J; Rinn JL
    Genome Res; 2016 Jul; 26(7):990-9. PubMed ID: 27197224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BioBin: a bioinformatics tool for automating the binning of rare variants using publicly available biological knowledge.
    Moore CB; Wallace JR; Frase AT; Pendergrass SA; Ritchie MD
    BMC Med Genomics; 2013; 6 Suppl 2(Suppl 2):S6. PubMed ID: 23819467
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.