These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37883472)

  • 1. Masked inverse folding with sequence transfer for protein representation learning.
    Yang KK; Zanichelli N; Yeh H
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37883472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutions are competitive with transformers for protein sequence pretraining.
    Yang KK; Fusi N; Lu AX
    Cell Syst; 2024 Mar; 15(3):286-294.e2. PubMed ID: 38428432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A BERT-based pretraining model for extracting molecular structural information from a SMILES sequence.
    Zheng X; Tomiura Y
    J Cheminform; 2024 Jun; 16(1):71. PubMed ID: 38898528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MolPROP: Molecular Property prediction with multimodal language and graph fusion.
    Rollins ZA; Cheng AC; Metwally E
    J Cheminform; 2024 May; 16(1):56. PubMed ID: 38778388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-supervised learning on millions of primary RNA sequences from 72 vertebrates improves sequence-based RNA splicing prediction.
    Chen K; Zhou Y; Ding M; Wang Y; Ren Z; Yang Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38605640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential autoencoders for feature engineering and pretraining in major depressive disorder risk prediction.
    Jones BW; Taylor WD; Walsh CG
    JAMIA Open; 2023 Dec; 6(4):ooad086. PubMed ID: 37818308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures.
    Lategan FA; Schreiber C; Patterton HG
    BMC Bioinformatics; 2023 Oct; 24(1):373. PubMed ID: 37789284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-aware protein self-supervised learning.
    Chen CS; Zhou J; Wang F; Liu X; Dou D
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37052532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multimodal Protein Representation Framework for Quantifying Transferability Across Biochemical Downstream Tasks.
    Hu F; Hu Y; Zhang W; Huang H; Pan Y; Yin P
    Adv Sci (Weinh); 2023 Aug; 10(22):e2301223. PubMed ID: 37249398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contextual protein and antibody encodings from equivariant graph transformers.
    Mahajan SP; Ruffolo JA; Gray JJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction.
    Zhang XC; Wu CK; Yang ZJ; Wu ZX; Yi JC; Hsieh CY; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33951729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein sequence design on given backbones with deep learning.
    Liu Y; Liu H
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38157313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BartSmiles: Generative Masked Language Models for Molecular Representations.
    Chilingaryan G; Tamoyan H; Tevosyan A; Babayan N; Hambardzumyan K; Navoyan Z; Aghajanyan A; Khachatrian H; Khondkaryan L
    J Chem Inf Model; 2024 Aug; 64(15):5832-5843. PubMed ID: 39054761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo and inverse folding predictions of protein structure and dynamics.
    Godzik A; Kolinski A; Skolnick J
    J Comput Aided Mol Des; 1993 Aug; 7(4):397-438. PubMed ID: 8229093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning spatial structures of proteins improves protein-protein interaction prediction.
    Song B; Luo X; Luo X; Liu Y; Niu Z; Zeng X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35018418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of foldability and stability in designing real protein sequences.
    Biswas P; Bhattacherjee A
    Phys Chem Chem Phys; 2011 May; 13(20):9223-31. PubMed ID: 21468433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between protein folding kinetics and amino acid properties.
    Huang JT; Xing DJ; Huang W
    Amino Acids; 2012 Aug; 43(2):567-72. PubMed ID: 22160260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MSA-Regularized Protein Sequence Transformer toward Predicting Genome-Wide Chemical-Protein Interactions: Application to GPCRome Deorphanization.
    Cai T; Lim H; Abbu KA; Qiu Y; Nussinov R; Xie L
    J Chem Inf Model; 2021 Apr; 61(4):1570-1582. PubMed ID: 33757283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.