These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37883482)

  • 41. Beyond the fish-
    Rakowski CJ; Leibold MA
    PeerJ; 2022; 10():e14094. PubMed ID: 36193425
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combined effects of elevated carbon dioxide and temperature on phytoplankton-zooplankton link: A multi-influence of climate change on freshwater planktonic communities.
    Li W; Xu X; Yao J; Tanaka N; Nishimura O; Ma H
    Sci Total Environ; 2019 Mar; 658():1175-1185. PubMed ID: 30677981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes.
    Taipale SJ; Vuorio K; Aalto SL; Peltomaa E; Tiirola M
    Environ Res; 2019 Dec; 179(Pt B):108836. PubMed ID: 31708172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evenness effects mask richness effects on ecosystem functioning at macro-scales in lakes.
    Filstrup CT; King KBS; McCullough IM
    Ecol Lett; 2019 Dec; 22(12):2120-2129. PubMed ID: 31621180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity.
    Thompson PL; Davies TJ; Gonzalez A
    PLoS One; 2015; 10(2):e0117595. PubMed ID: 25693188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating the effects of aquaculture on the freshwater lake from the perspective of plankton communities: The diversity, co-occurrence patterns and their underlying mechanisms.
    Xu H; Zhao D; Zeng J; Mao Z; Gu X; Wu QL
    Environ Pollut; 2022 Sep; 309():119741. PubMed ID: 35839971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Long-term Variation Characteristics of Zooplankton Community Structure in Meiliang Bay, Lake Taihu].
    Yang J; Zhou J; Qin BQ; Quan QM; Li YX
    Huan Jing Ke Xue; 2020 Mar; 41(3):1246-1255. PubMed ID: 32608626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge.
    Li J; Song Y; Wan H
    Math Biosci Eng; 2017 Apr; 14(2):529-557. PubMed ID: 27879113
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lowered nutritional quality of plankton caused by global environmental changes.
    Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK
    Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological and chemical factors influencing shallow lake eutrophication: a long-term study.
    Lau SS; Lane SN
    Sci Total Environ; 2002 Apr; 288(3):167-81. PubMed ID: 11991522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication.
    Luo J
    Math Biosci; 2013 Oct; 245(2):126-36. PubMed ID: 23791607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Horizontal distribution of pelagic crustacean zooplankton biomass and body size in contrasting habitat types in Lake Poyang, China.
    Liu B; Liu J; Jeppesen E; Chen Y; Liu X; Zhang W
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2270-2280. PubMed ID: 30465241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phytoplankton-Zooplankton Community Structure in Coal Mining Subsidence Lake.
    Fan T; Amzil H; Fang W; Xu L; Lu A; Wang S; Wang X; Chen Y; Pan J; Wei X
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels.
    Sommer U; Sommer F; Santer B; Zöllner E; Jürgens K; Jamieson C; Boersma M; Gocke K
    Oecologia; 2003 May; 135(4):639-47. PubMed ID: 16228259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrogen effects on the pelagic food web are modified by dissolved organic carbon.
    Deininger A; Faithfull CL; Bergström AK
    Oecologia; 2017 Aug; 184(4):901-916. PubMed ID: 28756491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. "Trophic overyielding": phytoplankton diversity promotes zooplankton productivity.
    Striebel M; Singer G; Stibor H; Andersen T
    Ecology; 2012 Dec; 93(12):2719-27. PubMed ID: 23431601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Factors regulating phytoplankton biomass along the Indian coast: elucidation with long-term data.
    Manuri DB; Chandrasekaran M; Perumal M; Karri R; Mallavarapu VR
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27409-27420. PubMed ID: 36378370
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton.
    Vincent JL; Paterson MJ; Norman BC; Gray EP; Ranville JF; Scott AB; Frost PC; Xenopoulos MA
    Ecotoxicology; 2017 May; 26(4):502-515. PubMed ID: 28233158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal variation in zooplankton and phytoplankton community species composition and the affecting factors in Lake Taihu-a large freshwater lake in China.
    Li C; Feng W; Chen H; Li X; Song F; Guo W; Giesy JP; Sun F
    Environ Pollut; 2019 Feb; 245():1050-1057. PubMed ID: 30682739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.