BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37883555)

  • 1. Sleep and the hypothalamus.
    Adamantidis AR; de Lecea L
    Science; 2023 Oct; 382(6669):405-412. PubMed ID: 37883555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in EEG activity and hypothalamic temperature as indices for non-REM sleep to REM sleep transitions.
    Capitani P; Cerri M; Amici R; Baracchi F; Jones CA; Luppi M; Perez E; Parmeggiani PL; Zamboni G
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):182-7. PubMed ID: 15936533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The direct cooling of the preoptic-hypothalamic area elicits the release of thyroid stimulating hormone during wakefulness but not during REM sleep.
    Martelli D; Luppi M; Cerri M; Tupone D; Mastrotto M; Perez E; Zamboni G; Amici R
    PLoS One; 2014; 9(2):e87793. PubMed ID: 24498374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of elevated ambient temperature on sleep, EEG spectra, and brain temperature in the rat.
    Gao BO; Franken P; Tobler I; Borbély AA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):R1365-73. PubMed ID: 7611510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How REM sleep shapes hypothalamic computations for feeding behavior.
    Oesch LT; Adamantidis AR
    Trends Neurosci; 2021 Dec; 44(12):990-1003. PubMed ID: 34663506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep.
    Niethard N; Brodt S; Born J
    J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-orchestration of sleep and wakefulness.
    Sulaman BA; Wang S; Tyan J; Eban-Rothschild A
    Nat Neurosci; 2023 Feb; 26(2):196-212. PubMed ID: 36581730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hypothalamic Switch for REM and Non-REM Sleep.
    Chen KS; Xu M; Zhang Z; Chang WC; Gaj T; Schaffer DV; Dan Y
    Neuron; 2018 Mar; 97(5):1168-1176.e4. PubMed ID: 29478915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the thermal characteristics of hypothalamic neurons during sleep and wakefulness.
    Glotzbach SF; Heller HC
    Brain Res; 1984 Aug; 309(1):17-26. PubMed ID: 6488008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic Neurons in the Preoptic Hypothalamus Promote Wakefulness, Destabilize NREM Sleep, Suppress REM Sleep, and Regulate Cortical Dynamics.
    Mondino A; Hambrecht-Wiedbusch VS; Li D; York AK; Pal D; González J; Torterolo P; Mashour GA; Vanini G
    J Neurosci; 2021 Apr; 41(15):3462-3478. PubMed ID: 33664133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness.
    Desseilles M; Vu TD; Laureys S; Peigneux P; Degueldre C; Phillips C; Maquet P
    Neuroimage; 2006 Sep; 32(3):1008-15. PubMed ID: 16875846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dynamics of the neuronal activity of the posterior hypothalamus during a phase shift of the wakefulness-sleep cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1988; 20(2):160-7. PubMed ID: 3398968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothalamic osmoregulation is maintained across the wake-sleep cycle in the rat.
    Luppi M; Martelli D; Amici R; Baracchi F; Cerri M; Dentico D; Perez E; Zamboni G
    J Sleep Res; 2010 Sep; 19(3):394-9. PubMed ID: 20374448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cortical responsiveness during natural sleep in freely behaving mice.
    Matsumoto S; Ohyama K; Díaz J; Yanagisawa M; Greene RW; Vogt KE
    Sci Rep; 2020 Feb; 10(1):2278. PubMed ID: 32042079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states.
    Kumar R; Bose A; Mallick BN
    PLoS One; 2012; 7(8):e42059. PubMed ID: 22905114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of polysialylated neural cell adhesion molecule in rapid eye movement sleep regulation in rats.
    Black MA; Deurveilher S; Seki T; Marsh DR; Rutishauser U; Rafuse VF; Semba K
    Eur J Neurosci; 2009 Dec; 30(11):2190-204. PubMed ID: 20128854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus.
    Maurer JJ; Lin A; Jin X; Hong J; Sathi N; Cardis R; Osorio-Forero A; Lüthi A; Weber F; Chung S
    Elife; 2024 Jun; 12():. PubMed ID: 38884573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.