These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37883689)

  • 1. Noninvasive Imaging of Tumor Glycolysis and Chemotherapeutic Resistance via De Novo Design of Molecular Afterglow Scaffold.
    Lei L; Yang F; Meng X; Xu L; Liang P; Ma Y; Dong Z; Wang Y; Zhang XB; Song G
    J Am Chem Soc; 2023 Nov; 145(44):24386-24400. PubMed ID: 37883689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Four-In-One" Design of a Hemicyanine-Based Modular Scaffold for High-Contrast Activatable Molecular Afterglow Imaging.
    Liu Y; Teng L; Lou XF; Zhang XB; Song G
    J Am Chem Soc; 2023 Mar; 145(9):5134-5144. PubMed ID: 36823697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging.
    Liu Y; Teng L; Lyu Y; Song G; Zhang XB; Tan W
    Nat Commun; 2022 Apr; 13(1):2216. PubMed ID: 35468901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Organic Afterglow Protheranostic Nanoassembly.
    He S; Xie C; Jiang Y; Pu K
    Adv Mater; 2019 Aug; 31(32):e1902672. PubMed ID: 31206855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies.
    Wang J; Li J; Yu J; Zhang H; Zhang B
    ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics.
    Xu C; Huang J; Jiang Y; He S; Zhang C; Pu K
    Nat Biomed Eng; 2023 Mar; 7(3):298-312. PubMed ID: 36550302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles.
    Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K
    Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents.
    Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z
    Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Afterglow Nanoparticles in Bioapplications.
    Shen H; Liao S; Li Z; Wang Y; Huan S; Zhang XB; Song G
    Chemistry; 2023 Jul; 29(42):e202301209. PubMed ID: 37222343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive
    Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M
    J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging.
    Jiang Y; Huang J; Zhen X; Zeng Z; Li J; Xie C; Miao Q; Chen J; Chen P; Pu K
    Nat Commun; 2019 May; 10(1):2064. PubMed ID: 31048701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery.
    Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D
    Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment.
    Wang X; Pu K
    Chem Soc Rev; 2023 Jul; 52(14):4549-4566. PubMed ID: 37350132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging.
    Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G
    Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Zou R; Gao Y; Zhang Y; Jiao J; Wong KL; Wang J
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9667-9680. PubMed ID: 33617721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel afterglow nanoreporter for monitoring cancer therapy.
    Liao S; Wang Y; Li Z; Zhang Y; Yin X; Huan S; Zhang XB; Liu S; Song G
    Theranostics; 2022; 12(16):6883-6897. PubMed ID: 36276646
    [No Abstract]   [Full Text] [Related]  

  • 18. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging.
    Zhen X; Tao Y; An Z; Chen P; Xu C; Chen R; Huang W; Pu K
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28657119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors.
    Xie C; Zhen X; Miao Q; Lyu Y; Pu K
    Adv Mater; 2018 May; 30(21):e1801331. PubMed ID: 29611257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H
    Zeng W; Wu L; Ishigaki Y; Harimoto T; Hu Y; Sun Y; Wang Y; Suzuki T; Chen HY; Ye D
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202111759. PubMed ID: 34791772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.