These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37883860)

  • 1. Electromechanical interactions between cell membrane and nuclear envelope: Beyond the standard Schwan's model of biological cells.
    Sabri E; Brosseau C
    Bioelectrochemistry; 2024 Feb; 155():108583. PubMed ID: 37883860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin-layer approximation for the multi-physics and multiscale simulation of cell membrane electrodeformation.
    Sabri E; Brosseau C
    Bioelectrochemistry; 2022 Jun; 145():108055. PubMed ID: 35124390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible with Schwan's Equation Model.
    Mercadal B; Vernier PT; Ivorra A
    J Membr Biol; 2016 Oct; 249(5):663-676. PubMed ID: 27170140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity-induced electrodeformation and membrane capacitance coupling between cells.
    Sabri E; Brosseau C
    Eur Biophys J; 2021 Jul; 50(5):713-720. PubMed ID: 33538871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shaping the endoplasmic reticulum into the nuclear envelope.
    Anderson DJ; Hetzer MW
    J Cell Sci; 2008 Jan; 121(Pt 2):137-42. PubMed ID: 18187447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields.
    Bryant G; Wolfe J
    J Membr Biol; 1987; 96(2):129-39. PubMed ID: 3599064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuum electromechanical modeling of protein-membrane interactions.
    Zhou YC; Lu B; Gorfe AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041923. PubMed ID: 21230329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling cell membrane electrodeformation by alternating electric fields.
    Sabri E; Brosseau C
    Phys Rev E; 2021 Sep; 104(3-1):034413. PubMed ID: 34654107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling assemblies of biological cells exposed to electric fields.
    Fear EC; Stuchly MA
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1259-71. PubMed ID: 9775540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear envelope formation: mind the gaps.
    Larijani B; Poccia DL
    Annu Rev Biophys; 2009; 38():107-24. PubMed ID: 19416062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing the envelope: structure, function, and dynamics of the nuclear periphery.
    Hetzer MW; Walther TC; Mattaj IW
    Annu Rev Cell Dev Biol; 2005; 21():347-80. PubMed ID: 16212499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells.
    Gatenby RA; Frieden BR
    PLoS One; 2010 Aug; 5(8):e12084. PubMed ID: 20711447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive electrical properties of cultured murine lymphoblast (L5178Y) with reference to its cytoplasmic membrane, nuclear envelope, and intracellular phases.
    Irimajiri A; Doida Y; Hanai T; Inouye A
    J Membr Biol; 1978 Jan; 38(3):209-32. PubMed ID: 625050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosecond pulses targeting intracellular ablation increase destruction of tumor cells with irregular morphology.
    Yao C; Ning J; Liu H; Lv Y; Zhao Y; Dong S
    Bioelectrochemistry; 2020 Apr; 132():107432. PubMed ID: 31918056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth.
    Kiseleva E; Morozova KN; Voeltz GK; Allen TD; Goldberg MW
    J Struct Biol; 2007 Nov; 160(2):224-35. PubMed ID: 17889556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field.
    Nganguia H; Young YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052718. PubMed ID: 24329307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Nuclear Envelope Stress on Physiological and Pathological Processes in Central Nervous System.
    Kamikawa Y; Saito A; Imaizumi K
    Neurochem Res; 2022 Sep; 47(9):2478-2487. PubMed ID: 35486254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical dimension of the nuclear envelope.
    Mazzanti M; Bustamante JO; Oberleithner H
    Physiol Rev; 2001 Jan; 81(1):1-19. PubMed ID: 11152752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin.
    Tolokh IS; Kinney NA; Sharakhov IV; Onufriev AV
    Epigenetics Chromatin; 2023 May; 16(1):21. PubMed ID: 37254161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.