These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37883977)
1. An atlas of continuous adaptive evolution in endemic human viruses. Kistler KE; Bedford T Cell Host Microbe; 2023 Nov; 31(11):1898-1909.e3. PubMed ID: 37883977 [TBL] [Abstract][Full Text] [Related]
2. Immune Escape Adaptive Mutations in Hemagglutinin Are Responsible for the Antigenic Drift of Eurasian Avian-Like H1N1 Swine Influenza Viruses. Xu C; Zhang N; Yang Y; Liang W; Zhang Y; Wang J; Suzuki Y; Wu Y; Chen Y; Yang H; Qiao C; Chen H J Virol; 2022 Aug; 96(16):e0097122. PubMed ID: 35916512 [TBL] [Abstract][Full Text] [Related]
3. Cross-Protection by Inactivated H5 Prepandemic Vaccine Seed Strains against Diverse Goose/Guangdong Lineage H5N1 Highly Pathogenic Avian Influenza Viruses. Criado MF; Sá E Silva M; Lee DH; Salge CAL; Spackman E; Donis R; Wan XF; Swayne DE J Virol; 2020 Nov; 94(24):. PubMed ID: 32999029 [TBL] [Abstract][Full Text] [Related]
4. Mutations in the Hemagglutinin Stalk Domain Do Not Permit Escape from a Protective, Stalk-Based Vaccine-Induced Immune Response in the Mouse Model. Roubidoux EK; Carreño JM; McMahon M; Jiang K; van Bakel H; Wilson P; Krammer F mBio; 2021 Feb; 12(1):. PubMed ID: 33593972 [TBL] [Abstract][Full Text] [Related]
5. A virus-like particle vaccination strategy expands its tolerance to H3N2 antigenic drift by enhancing neutralizing antibodies against hemagglutinin stalk. Yang JR; Cheng CY; Chen CY; Lin CH; Kuo CY; Huang HY; Wu FT; Yang YC; Wu CY; Liu MT; Hsiao PW Antiviral Res; 2017 Apr; 140():62-75. PubMed ID: 28093338 [TBL] [Abstract][Full Text] [Related]
6. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Weisblum Y; Schmidt F; Zhang F; DaSilva J; Poston D; Lorenzi JC; Muecksch F; Rutkowska M; Hoffmann HH; Michailidis E; Gaebler C; Agudelo M; Cho A; Wang Z; Gazumyan A; Cipolla M; Luchsinger L; Hillyer CD; Caskey M; Robbiani DF; Rice CM; Nussenzweig MC; Hatziioannou T; Bieniasz PD Elife; 2020 Oct; 9():. PubMed ID: 33112236 [TBL] [Abstract][Full Text] [Related]
7. Identification of amino acid substitutions supporting antigenic change of influenza A(H1N1)pdm09 viruses. Koel BF; Mögling R; Chutinimitkul S; Fraaij PL; Burke DF; van der Vliet S; de Wit E; Bestebroer TM; Rimmelzwaan GF; Osterhaus AD; Smith DJ; Fouchier RA; de Graaf M J Virol; 2015 Apr; 89(7):3763-75. PubMed ID: 25609810 [TBL] [Abstract][Full Text] [Related]
8. Deep Sequencing Reveals Potential Antigenic Variants at Low Frequencies in Influenza A Virus-Infected Humans. Dinis JM; Florek KR; Fatola OO; Moncla LH; Mutschler JP; Charlier OK; Meece JK; Belongia EA; Friedrich TC J Virol; 2016 Jan; 90(7):3355-65. PubMed ID: 26739054 [TBL] [Abstract][Full Text] [Related]
9. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Hervé PL; Lorin V; Jouvion G; Da Costa B; Escriou N Virology; 2015 Dec; 486():134-45. PubMed ID: 26433051 [TBL] [Abstract][Full Text] [Related]
10. Mapping of a Novel H3-Specific Broadly Neutralizing Monoclonal Antibody Targeting the Hemagglutinin Globular Head Isolated from an Elite Influenza Virus-Immunized Donor Exhibiting Serological Breadth. Qiu Y; Stegalkina S; Zhang J; Boudanova E; Park A; Zhou Y; Prabakaran P; Pougatcheva S; Ustyugova IV; Vogel TU; Mundle ST; Oomen R; Delagrave S; Ross TM; Kleanthous H; Qiu H J Virol; 2020 Feb; 94(6):. PubMed ID: 31826999 [TBL] [Abstract][Full Text] [Related]
11. The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus. Abente EJ; Santos J; Lewis NS; Gauger PC; Stratton J; Skepner E; Anderson TK; Rajao DS; Perez DR; Vincent AL J Virol; 2016 Sep; 90(18):8266-80. PubMed ID: 27384658 [TBL] [Abstract][Full Text] [Related]
12. Sera from Individuals with Narrowly Focused Influenza Virus Antibodies Rapidly Select Viral Escape Mutations Davis AKF; McCormick K; Gumina ME; Petrie JG; Martin ET; Xue KS; Bloom JD; Monto AS; Bushman FD; Hensley SE J Virol; 2018 Oct; 92(19):. PubMed ID: 30045982 [TBL] [Abstract][Full Text] [Related]
13. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Wei CJ; Boyington JC; Dai K; Houser KV; Pearce MB; Kong WP; Yang ZY; Tumpey TM; Nabel GJ Sci Transl Med; 2010 Mar; 2(24):24ra21. PubMed ID: 20375007 [TBL] [Abstract][Full Text] [Related]
14. HA gene amino acid mutations contribute to antigenic variation and immune escape of H9N2 influenza virus. Zhu R; Xu S; Sun W; Li Q; Wang S; Shi H; Liu X Vet Res; 2022 Jun; 53(1):43. PubMed ID: 35706014 [TBL] [Abstract][Full Text] [Related]
15. Generation of DelNS1 Influenza Viruses: a Strategy for Optimizing Live Attenuated Influenza Vaccines. Wang P; Zheng M; Lau SY; Chen P; Mok BW; Liu S; Liu H; Huang X; Cremin CJ; Song W; Chen Y; Wong YC; Huang H; To KK; Chen Z; Xia N; Yuen KY; Chen H mBio; 2019 Sep; 10(5):. PubMed ID: 31530680 [TBL] [Abstract][Full Text] [Related]
16. Comparison of A(H3N2) Neutralizing Antibody Responses Elicited by 2018-2019 Season Quadrivalent Influenza Vaccines Derived from Eggs, Cells, and Recombinant Hemagglutinin. Wang W; Alvarado-Facundo E; Vassell R; Collins L; Colombo RE; Ganesan A; Geaney C; Hrncir D; Lalani T; Markelz AE; Maves RC; McClenathan B; Mende K; Richard SA; Schofield C; Seshadri S; Spooner C; Utz GC; Warkentien TE; Levine M; Coles CL; Burgess TH; Eichelberger M; Weiss CD Clin Infect Dis; 2021 Dec; 73(11):e4312-e4320. PubMed ID: 32898271 [TBL] [Abstract][Full Text] [Related]
17. Antigenic Characterization of Human Monoclonal Antibodies for Therapeutic Use against H7N9 Avian Influenza Virus. Chang P; Lukosaityte D; Sealy JE; Rijal P; Sadeyen JR; Bhat S; Crossley S; Daines R; Huang KA; Townsend AR; Iqbal M J Virol; 2023 Jan; 97(1):e0143122. PubMed ID: 36541801 [TBL] [Abstract][Full Text] [Related]
18. Subclade 2.2.1-Specific Human Monoclonal Antibodies That Recognize an Epitope in Antigenic Site A of Influenza A(H5) Virus HA Detected between 2015 and 2018. Okuda M; Yamayoshi S; Uraki R; Ito M; Hamabata T; Kawaoka Y Viruses; 2019 Apr; 11(4):. PubMed ID: 30987023 [TBL] [Abstract][Full Text] [Related]
19. Epistasis reduces fitness costs of influenza A virus escape from stem-binding antibodies. Lee CY; Raghunathan V; Caceres CJ; Geiger G; Seibert B; Cargnin Faccin F; Gay LC; Ferreri LM; Kaul D; Wrammert J; Tan GS; Perez DR; Lowen AC Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2208718120. PubMed ID: 37068231 [TBL] [Abstract][Full Text] [Related]
20. Genomewide analysis of reassortment and evolution of human influenza A(H3N2) viruses circulating between 1968 and 2011. Westgeest KB; Russell CA; Lin X; Spronken MI; Bestebroer TM; Bahl J; van Beek R; Skepner E; Halpin RA; de Jong JC; Rimmelzwaan GF; Osterhaus AD; Smith DJ; Wentworth DE; Fouchier RA; de Graaf M J Virol; 2014 Mar; 88(5):2844-57. PubMed ID: 24371052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]