These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37884170)

  • 1. Cardiovascular physiology of embryonic neotropic cormorants (Phalacrocorax brasilianus).
    Cummins JB; Crossley DA
    Comp Biochem Physiol A Mol Integr Physiol; 2024 Jan; 287():111539. PubMed ID: 37884170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of adrenergic and cholinergic receptor cardiovascular regulatory capacity in the Canada goose (Branta canadensis) and domestic goose (Anser anser domesticus).
    Swart J; Tate K; Crossley DA
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Jan; 167():59-67. PubMed ID: 24140488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and energetics of avian embryos.
    Vleck CM; Vleck D
    J Exp Zool Suppl; 1987; 1():111-25. PubMed ID: 3298529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing of incorporation of docosahexaenoic acid into brain and muscle phospholipids during precocial and altricial modes of avian development.
    Speake BK; Wood NA
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jun; 141(2):147-58. PubMed ID: 15939318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyroid hormone manipulation influences development of cardiovascular regulation in embryonic Pekin duck, Anas platyrhynchos domestica.
    Sirsat TS; Crossley DA; Crossley JL; Dzialowski EM
    J Comp Physiol B; 2018 Sep; 188(5):843-853. PubMed ID: 29948159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of cardiovascular control mechanisms in the embryonic emu (Dromiceius novaehollandiae).
    Crossley DA; Bagatto BP; Dzialowski EM; Burggren WW
    J Exp Biol; 2003 Aug; 206(Pt 15):2703-10. PubMed ID: 12819276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of heart rate in developing bird embryos: effects of developmental mode and mass.
    Ar A; Tazawa H
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Dec; 124(4):491-500. PubMed ID: 10682248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avian thyroid development and adaptive plasticity.
    McNabb FM
    Gen Comp Endocrinol; 2006 Jun; 147(2):93-101. PubMed ID: 16457824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low occurrence of hemosporidian parasites in the Neotropic cormorant (Phalacrocorax brasilianus) in Chile.
    Pedro R; Claudio N; Elena C; Claudio V
    Parasitol Res; 2019 Jan; 118(1):325-333. PubMed ID: 30448937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile.
    González-Acuña D; Llanos-Soto S; Oyarzún-Ruiz P; Kinsella JM; Barrientos C; Thomas R; Cicchino A; Moreno L
    Rev Bras Parasitol Vet; 2020; 29(3):e003920. PubMed ID: 33027422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonrandom spatial distribution of Neotropic Cormorants (Phalacrocorax brasilianus) along a coastal highway in Lima, Peru.
    Lozano-Sanllehi S; Zavalaga CB
    PLoS One; 2021; 16(3):e0242835. PubMed ID: 33647058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete mitochondrial genome of the Neotropic cormorant (Phalacrocorax brasilianus).
    Rodrigues P; Álvarez P; Verdugo C
    Mitochondrial DNA A DNA Mapp Seq Anal; 2017 May; 28(3):401-402. PubMed ID: 26713786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serosurvey for selected infectious agents in two sympatric species of cormorants (Phalacrocorax atriceps and Phalacrocorax magellanicus) from coastal Patagonia, Argentina.
    Gallo L; Quintana F; Uhart M
    J Wildl Dis; 2013 Jul; 49(3):492-500. PubMed ID: 23778597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprint of "Avian thyroid development and adaptive plasticity" [Gen. Comp. Endocrinol. 147, 93-101].
    McNabb FM
    Gen Comp Endocrinol; 2006 Sep; 148(3):290-8. PubMed ID: 16938499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic hypoxic incubation blunts thermally dependent cholinergic tone on the cardiovascular system in embryonic American alligator (Alligator mississippiensis).
    Marks C; Eme J; Elsey RM; Crossley DA
    J Comp Physiol B; 2013 Oct; 183(7):947-57. PubMed ID: 23632626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression.
    Eme J; Rhen T; Tate KB; Gruchalla K; Kohl ZF; Slay CE; Crossley DA
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R966-79. PubMed ID: 23552497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phylogenetic position of the Galápagos Cormorant.
    Kennedy M; Valle CA; Spencer HG
    Mol Phylogenet Evol; 2009 Oct; 53(1):94-8. PubMed ID: 19523526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short communication: Baroreflex function in embryonic emus (Dromiceius novaehollandiae).
    Crossley DA; Bagatto BP; Dzialowski EM; Burggren WW; Hicks JW
    Comp Biochem Physiol A Mol Integr Physiol; 2024 Apr; 290():111576. PubMed ID: 38220129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and morphological evidences for the existence of a new species of Contracaecum (Nematoda: Anisakidae) parasite of Phalacrocorax brasilianus (Gmelin) from Chile and its genetic relationships with congeners from fish-eating birds.
    Garbin L; Mattiucci S; Paoletti M; González-Acuña D; Nascetti G
    J Parasitol; 2011 Jun; 97(3):476-92. PubMed ID: 21506861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOLECULAR IDENTIFICATION OF AVIAN VIRUSES IN NEOTROPIC CORMORANTS ( PHALACROCORAX BRASILIANUS) IN CHILE.
    Verdugo C; Pinto A; Ariyama N; Moroni M; Hernandez C
    J Wildl Dis; 2019 Jan; 55(1):105-112. PubMed ID: 30216128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.