BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37884182)

  • 1. Butyrylcholinesterase signal sequence self-aggregates and enhances amyloid fibril formation in vitro.
    Jasiecki J; Targońska M; Janaszak-Jasiecka A; Kalinowski L; Waleron K; Wasąg B
    Chem Biol Interact; 2023 Dec; 386():110783. PubMed ID: 37884182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Butyrylcholinesterase-knockout reduces fibrillar β-amyloid and conserves
    DeBay DR; Reid GA; Macdonald IR; Mawko G; Burrell S; Martin E; Bowen CV; Darvesh S
    Brain Res; 2017 Sep; 1671():102-110. PubMed ID: 28729192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of Butyrylcholinesterase Activity as a Sensitive and Specific Biomarker of Alzheimer's Disease.
    Macdonald IR; Maxwell SP; Reid GA; Cash MK; DeBay DR; Darvesh S
    J Alzheimers Dis; 2017; 58(2):491-505. PubMed ID: 28453492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Exogenous Butyrylcholinesterase with β-Amyloid Plaques in 5XFAD/Butyrylcholinesterase-Knockout Mouse Brain.
    Reid GA; Darvesh S
    Curr Alzheimer Res; 2021; 18(6):470-481. PubMed ID: 34455970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of exogenous acetylcholinesterase and butyrylcholinesterase with amyloid-β plaques in human brain tissue.
    Reid GA; Darvesh S
    Chem Biol Interact; 2024 May; 395():111012. PubMed ID: 38648920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergy between the alteration in the N-terminal region of butyrylcholinesterase K variant and apolipoprotein E4 in late-onset Alzheimer's disease.
    Jasiecki J; Limon-Sztencel A; Żuk M; Chmara M; Cysewski D; Limon J; Wasąg B
    Sci Rep; 2019 Mar; 9(1):5223. PubMed ID: 30914707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistochemical analysis of hippocampal butyrylcholinesterase: Implications for regional vulnerability in Alzheimer's disease.
    Mizukami K; Akatsu H; Abrahamson EE; Mi Z; Ikonomovic MD
    Neuropathology; 2016 Apr; 36(2):135-45. PubMed ID: 26293308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model.
    Reid GA; Darvesh S
    Neuroscience; 2015 Jul; 298():424-35. PubMed ID: 25931333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuropathology and cholinesterase expression in the brains of octogenarians and older.
    Maxwell SP; Cash MK; Darvesh S
    Chem Biol Interact; 2022 Sep; 364():110065. PubMed ID: 35872043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease.
    Rijal Upadhaya A; Kosterin I; Kumar S; von Arnim CA; Yamaguchi H; Fändrich M; Walter J; Thal DR
    Brain; 2014 Mar; 137(Pt 3):887-903. PubMed ID: 24519982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butyrylcholinesterase attenuates amyloid fibril formation in vitro.
    Diamant S; Podoly E; Friedler A; Ligumsky H; Livnah O; Soreq H
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8628-33. PubMed ID: 16731619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation and structure of amyloid β-protein.
    Ono K; Watanabe-Nakayama T
    Neurochem Int; 2021 Dec; 151():105208. PubMed ID: 34655726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer's Disease Pathogenesis.
    Jasiecki J; Targońska M; Wasąg B
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus: Unraveling Amyloid-β Peptide Aggregation and Age-Related Amyloid Pathology.
    Cisternas P; Zolezzi JM; Lindsay C; Rivera DS; Martinez A; Bozinovic F; Inestrosa NC
    J Alzheimers Dis; 2018; 66(3):1145-1163. PubMed ID: 30412496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinesterases in normal and Alzheimer's disease primary olfactory gyrus.
    Hamodat H; Cash MK; Fisk JD; Darvesh S
    Neuropathol Appl Neurobiol; 2017 Dec; 43(7):571-583. PubMed ID: 28644906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of peptides that specifically bind Abeta1-40 amyloid in vitro and amyloid plaques in Alzheimer's disease brain using phage display.
    Kang CK; Jayasinha V; Martin PT
    Neurobiol Dis; 2003 Oct; 14(1):146-56. PubMed ID: 13678675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of insoluble Amyloid-β with soluble Amyloid-β dimers decreases Amyloid-β plaque numbers.
    van Gerresheim EF; Herring A; Gremer L; Müller-Schiffmann A; Keyvani K; Korth C
    Neuropathol Appl Neurobiol; 2021 Aug; 47(5):603-610. PubMed ID: 33338256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrylcholinesterase Protein Ends in the Pathogenesis of Alzheimer's Disease-Could
    Jasiecki J; Wasąg B
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31601022
    [No Abstract]   [Full Text] [Related]  

  • 19. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide.
    Hu X; Crick SL; Bu G; Frieden C; Pappu RV; Lee JM
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20324-9. PubMed ID: 19910533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway.
    Ali MY; Jannat S; Edraki N; Das S; Chang WK; Kim HC; Park SK; Chang MS
    Chem Biol Interact; 2019 Aug; 309():108707. PubMed ID: 31194956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.