BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37884207)

  • 1. Development of lung tissue models and their applications.
    Petpiroon N; Netkueakul W; Sukrak K; Wang C; Liang Y; Wang M; Liu Y; Li Q; Kamran R; Naruse K; Aueviriyavit S; Takahashi K
    Life Sci; 2023 Dec; 334():122208. PubMed ID: 37884207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling.
    Tian L; Gao J; Garcia IM; Chen HJ; Castaldi A; Chen YW
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e399. PubMed ID: 33145915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional models of the lung: past, present and future: a mini review.
    Sen C; Freund D; Gomperts BN
    Biochem Soc Trans; 2022 Apr; 50(2):1045-1056. PubMed ID: 35411381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organoids as a model system for studying human lung development and disease.
    Nadkarni RR; Abed S; Draper JS
    Biochem Biophys Res Commun; 2016 May; 473(3):675-82. PubMed ID: 26721435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of Respiratory Diseases Evolving with Fibrosis from Organoids Derived from Human Pluripotent Stem Cells.
    Chamorro-Herrero I; Zambrano A
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lung Organoids-The Ultimate Tool to Dissect Pulmonary Diseases?
    Bosáková V; De Zuani M; Sládková L; Garlíková Z; Jose SS; Zelante T; Hortová Kohoutková M; Frič J
    Front Cell Dev Biol; 2022; 10():899368. PubMed ID: 35912110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease.
    Gkatzis K; Taghizadeh S; Huh D; Stainier DYR; Bellusci S
    Eur Respir J; 2018 Nov; 52(5):. PubMed ID: 30262579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Authentic Modeling of Human Respiratory Virus Infection in Human Pluripotent Stem Cell-Derived Lung Organoids.
    Porotto M; Ferren M; Chen YW; Siu Y; Makhsous N; Rima B; Briese T; Greninger AL; Snoeck HW; Moscona A
    mBio; 2019 May; 10(3):. PubMed ID: 31064833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative explorations: unveiling the potential of organoids for investigating environmental pollutant exposure.
    Zhang Y; Liu K; He H; Xiao H; Fang Z; Chen X; Li H
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16256-16273. PubMed ID: 38342830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pluripotent stem cells for target organ developmental toxicity testing.
    Wu X; Chen Y; Kreutz A; Silver B; Tokar EJ
    Toxicol Sci; 2024 May; 199(2):163-171. PubMed ID: 38547390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diesel Particulate Matter 2.5 Induces Epithelial-to-Mesenchymal Transition and Upregulation of SARS-CoV-2 Receptor during Human Pluripotent Stem Cell-Derived Alveolar Organoid Development.
    Kim JH; Kim J; Kim WJ; Choi YH; Yang SR; Hong SH
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33202948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Complete Multi-Cell Type Lung Organoids From Human Embryonic and Patient-Specific Induced Pluripotent Stem Cells for Infectious Disease Modeling and Therapeutics Validation.
    Leibel SL; McVicar RN; Winquist AM; Niles WD; Snyder EY
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e118. PubMed ID: 32640120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airway organoids as models of human disease.
    van der Vaart J; Clevers H
    J Intern Med; 2021 May; 289(5):604-613. PubMed ID: 32350962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions.
    Hiemstra PS; Grootaers G; van der Does AM; Krul CAM; Kooter IM
    Toxicol In Vitro; 2018 Mar; 47():137-146. PubMed ID: 29155131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing three-dimensional (3D) cell culture models for pulmonary infections: State of the art and future directions.
    Shah DD; Raghani NR; Chorawala MR; Singh S; Prajapati BG
    Naunyn Schmiedebergs Arch Pharmacol; 2023 Nov; 396(11):2861-2880. PubMed ID: 37266588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis.
    Caipa Garcia AL; Arlt VM; Phillips DH
    Mutagenesis; 2022 May; 37(2):143-154. PubMed ID: 34147034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives of future lung toxicology studies using human pluripotent stem cells.
    Masui A; Hirai T; Gotoh S
    Arch Toxicol; 2022 Feb; 96(2):389-402. PubMed ID: 34973109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicological evaluation of airborne particulate matter. Are cell culture technologies ready to replace animal testing?
    Silvani S; Figliuzzi M; Remuzzi A
    J Appl Toxicol; 2019 Nov; 39(11):1484-1491. PubMed ID: 31025406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developments and Opportunities for 3D Bioprinted Organoids.
    Ren Y; Yang X; Ma Z; Sun X; Zhang Y; Li W; Yang H; Qiang L; Yang Z; Liu Y; Deng C; Zhou L; Wang T; Lin J; Li T; Wu T; Wang J
    Int J Bioprint; 2021; 7(3):364. PubMed ID: 34286150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection.
    Ni K; Che B; Yang C; Qin Y; Gu R; Wang C; Luo M; Deng L
    Front Pharmacol; 2022; 13():1033043. PubMed ID: 36578545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.