These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37884438)

  • 1. Assembly-driven protection from hydrolysis as key selective force during chemical evolution.
    Edri R; Fisher S; Menor-Salvan C; Williams LD; Frenkel-Pinter M
    FEBS Lett; 2023 Dec; 597(23):2879-2896. PubMed ID: 37884438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding, Assembly, and Persistence: The Essential Nature and Origins of Biopolymers.
    Runnels CM; Lanier KA; Williams JK; Bowman JC; Petrov AS; Hud NV; Williams LD
    J Mol Evol; 2018 Dec; 86(9):598-610. PubMed ID: 30456440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution.
    Walker SI; Grover MA; Hud NV
    PLoS One; 2012; 7(4):e34166. PubMed ID: 22493682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital and analog chemical evolution.
    Goodwin JT; Mehta AK; Lynn DG
    Acc Chem Res; 2012 Dec; 45(12):2189-99. PubMed ID: 23098254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems.
    Ruiz-Mirazo K; Briones C; de la Escosura A
    Open Biol; 2017 Apr; 7(4):. PubMed ID: 28446711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Evolution and the Evolutionary Definition of Life.
    Higgs PG
    J Mol Evol; 2017 Jun; 84(5-6):225-235. PubMed ID: 28664404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocatalytic replication and homochirality in biopolymers: is homochirality a requirement of life or a result of it?
    Wu M; Walker SI; Higgs PG
    Astrobiology; 2012 Sep; 12(9):818-29. PubMed ID: 22931294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanine-centric self-assembly of nucleotides in water: an important consideration in prebiotic chemistry.
    Cassidy LM; Burcar BT; Stevens W; Moriarty EM; McGown LB
    Astrobiology; 2014 Oct; 14(10):876-86. PubMed ID: 25285982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of self-reproduction in cooperative chemical evolution of prebiological molecules.
    Fishkis M
    Orig Life Evol Biosph; 2011 Jun; 41(3):261-75. PubMed ID: 20811777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Reverse chemical evolution': a new method to search for thermally stable biopolymers.
    Mitsuzawa S; Yukawa T
    Orig Life Evol Biosph; 2003 Apr; 33(2):163-71. PubMed ID: 12967265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prebiotic condensation reactions in an aqueous medium: a review of condensing agents.
    Hulshof J; Ponnamperuma C
    Orig Life; 1976 Aug; 7(3):197-24. PubMed ID: 1012710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation and acylation transfer reactions: Clues to a dual origin of metabolism.
    Freire MÁ
    Biosystems; 2020 Dec; 198():104260. PubMed ID: 32987142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative formation of porous silica and peptides on the prebiotic Earth.
    Navrotsky A; Hervig R; Lyons J; Seo DK; Shock E; Voskanyan A
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33376204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat flows enrich prebiotic building blocks and enhance their reactivity.
    Matreux T; Aikkila P; Scheu B; Braun D; Mast CB
    Nature; 2024 Apr; 628(8006):110-116. PubMed ID: 38570715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the first biopolymers could have evolved.
    Abkevich VI; Gutin AM; Shakhnovich EI
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):839-44. PubMed ID: 8570645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory, modelling and simulation in origins of life studies.
    Coveney PV; Swadling JB; Wattis JA; Greenwell HC
    Chem Soc Rev; 2012 Aug; 41(16):5430-46. PubMed ID: 22677708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeability-driven selection in a semi-empirical protocell model: the roots of prebiotic systems evolution.
    Piedrafita G; Monnard PA; Mavelli F; Ruiz-Mirazo K
    Sci Rep; 2017 Jun; 7(1):3141. PubMed ID: 28600550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: towards the consensus paradigm of the abiogenic origin of life.
    Mulkidjanian AY; Galperin MY
    Chem Biodivers; 2007 Sep; 4(9):2003-15. PubMed ID: 17886857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of Abiotic Nucleotide Synthesis.
    Yadav M; Kumar R; Krishnamurthy R
    Chem Rev; 2020 Jun; 120(11):4766-4805. PubMed ID: 31916751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal reactions of pyruvic acid: synthesis, selection, and self-assembly of amphiphilic molecules.
    Hazen RM; Deamer DW
    Orig Life Evol Biosph; 2007 Apr; 37(2):143-52. PubMed ID: 17136431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.