BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37884896)

  • 1. Dung beetle-associated yeasts display multiple stress tolerance: a desirable trait of potential industrial strains.
    Nwaefuna AE; Garcia-Aloy M; Loeto D; Ncube T; Gombert AK; Boekhout T; Alwasel S; Zhou N
    BMC Microbiol; 2023 Oct; 23(1):309. PubMed ID: 37884896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production.
    Mukherjee V; Steensels J; Lievens B; Van de Voorde I; Verplaetse A; Aerts G; Willems KA; Thevelein JM; Verstrepen KJ; Ruyters S
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9483-98. PubMed ID: 25267160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of dung beetle-associated yeasts from pristine environments of Botswana.
    Nwaefuna AE; Boekhout T; Garcia-Aloy M; Vrhovsek U; Zhou N
    Yeast; 2023 May; 40(5-6):182-196. PubMed ID: 37096317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.
    Mukherjee V; Radecka D; Aerts G; Verstrepen KJ; Lievens B; Thevelein JM
    Biotechnol Biofuels; 2017; 10():216. PubMed ID: 28924451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.
    Favaro L; Basaglia M; Trento A; Van Rensburg E; García-Aparicio M; Van Zyl WH; Casella S
    Biotechnol Biofuels; 2013 Nov; 6(1):168. PubMed ID: 24286305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D; Mukherjee V; Mateo RQ; Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioethanolic yeasts from dung beetles: tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation.
    Nwaefuna AE; Rumbold K; Boekhout T; Zhou N
    Biotechnol Biofuels; 2021 Apr; 14(1):86. PubMed ID: 33827664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.
    Zheng YL; Wang SA
    PLoS One; 2015; 10(8):e0133889. PubMed ID: 26244846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains.
    Canseco Grellet MA; Dantur KI; Perera MF; Ahmed PM; Castagnaro A; Arroyo-Lopez FN; Gallego JB; Welin B; Ruiz RM
    Fungal Biol; 2022 Oct; 126(10):658-673. PubMed ID: 36116898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution: its principles and applications in developing stress-tolerant yeasts.
    Swamy KBS; Zhou N
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2067-2077. PubMed ID: 30659332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ability of Pichia kudriavzevii to tolerate multiple stresses makes it promising for developing improved bioethanol production processes.
    Pongcharoen P
    Lett Appl Microbiol; 2022 Jul; 75(1):36-44. PubMed ID: 35315114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do yeast cells become tolerant to high ethanol concentrations?
    Snoek T; Verstrepen KJ; Voordeckers K
    Curr Genet; 2016 Aug; 62(3):475-80. PubMed ID: 26758993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol.
    Wimalasena TT; Greetham D; Marvin ME; Liti G; Chandelia Y; Hart A; Louis EJ; Phister TG; Tucker GA; Smart KA
    Microb Cell Fact; 2014 Mar; 13(1):47. PubMed ID: 24670111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigating stress in industrial yeasts.
    Walker GM; Basso TO
    Fungal Biol; 2020 May; 124(5):387-397. PubMed ID: 32389301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening novel genes by a comprehensive strategy to construct multiple stress-tolerant industrial Saccharomyces cerevisiae with prominent bioethanol production.
    Wang L; Li B; Su RR; Wang SP; Xia ZY; Xie CY; Tang YQ
    Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):11. PubMed ID: 35418148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the potential of wild yeasts for bioethanol production.
    Ruyters S; Mukherjee V; Verstrepen KJ; Thevelein JM; Willems KA; Lievens B
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):39-48. PubMed ID: 25413210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain.
    Zaky AS; Greetham D; Tucker GA; Du C
    Sci Rep; 2018 Aug; 8(1):12127. PubMed ID: 30108287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.
    Matsushika A; Inoue H; Kodaki T; Sawayama S
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):37-53. PubMed ID: 19572128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.