These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37885127)
21. The abilities of movie-watching functional connectivity in individual identifications and individualized predictions. Guan Y; Ma H; Liu J; Xu L; Zhang Y; Tian L Brain Imaging Behav; 2023 Dec; 17(6):628-638. PubMed ID: 37553449 [TBL] [Abstract][Full Text] [Related]
22. Is Rest Really Rest? Resting-State Functional Connectivity During Rest and Motor Task Paradigms. Jurkiewicz MT; Crawley AP; Mikulis DJ Brain Connect; 2018 Jun; 8(5):268-275. PubMed ID: 29665711 [TBL] [Abstract][Full Text] [Related]
23. A Longitudinal Study of Changes in Resting-State Functional Magnetic Resonance Imaging Functional Connectivity Networks During Healthy Aging. Oschmann M; Gawryluk JR Brain Connect; 2020 Sep; 10(7):377-384. PubMed ID: 32623915 [No Abstract] [Full Text] [Related]
24. Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging. Geerligs L; Tsvetanov KA; Cam-Can ; Henson RN Hum Brain Mapp; 2017 Aug; 38(8):4125-4156. PubMed ID: 28544076 [TBL] [Abstract][Full Text] [Related]
25. Task-based co-activation patterns reliably predict resting state canonical network engagement during development. Ye F; Kohler R; Serio B; Lichenstein S; Yip SW Dev Cogn Neurosci; 2022 Dec; 58():101160. PubMed ID: 36270101 [TBL] [Abstract][Full Text] [Related]
26. Brain-environment alignment during movie watching predicts fluid intelligence and affective function in adulthood. Petrican R; Graham KS; Lawrence AD Neuroimage; 2021 Sep; 238():118177. PubMed ID: 34020016 [TBL] [Abstract][Full Text] [Related]
27. Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Salami A; Pudas S; Nyberg L Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17654-9. PubMed ID: 25422457 [TBL] [Abstract][Full Text] [Related]
28. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Kolesar TA; Bilevicius E; Kornelsen J Scand J Pain; 2017 Jul; 16():10-14. PubMed ID: 28850382 [TBL] [Abstract][Full Text] [Related]
29. Changes in structural and functional connectivity among resting-state networks across the human lifespan. Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530 [TBL] [Abstract][Full Text] [Related]
30. Intersubject consistent dynamic connectivity during natural vision revealed by functional MRI. Di X; Biswal BB Neuroimage; 2020 Aug; 216():116698. PubMed ID: 32130972 [TBL] [Abstract][Full Text] [Related]
31. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state. Dørum ES; Kaufmann T; Alnæs D; Andreassen OA; Richard G; Kolskår KK; Nordvik JE; Westlye LT Neuroimage; 2017 Mar; 148():364-372. PubMed ID: 28111190 [TBL] [Abstract][Full Text] [Related]
32. Brain connectivity at rest predicts individual differences in normative activity during movie watching. Gruskin DC; Patel GH Neuroimage; 2022 Jun; 253():119100. PubMed ID: 35304263 [TBL] [Abstract][Full Text] [Related]
33. Dynamic and stationary brain connectivity during movie watching as revealed by functional MRI. Di X; Zhang Z; Xu T; Biswal BB Brain Struct Funct; 2022 Sep; 227(7):2299-2312. PubMed ID: 35767066 [TBL] [Abstract][Full Text] [Related]
34. Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI. Sörös P; Hoxhaj E; Borel P; Sadohara C; Feige B; Matthies S; Müller HHO; Bachmann K; Schulze M; Philipsen A BMC Psychiatry; 2019 Jan; 19(1):43. PubMed ID: 30683074 [TBL] [Abstract][Full Text] [Related]
35. Characterizing Inscapes and resting-state in MEG: Effects in typical and atypical development. Vandewouw MM; Dunkley BT; Lerch JP; Anagnostou E; Taylor MJ Neuroimage; 2021 Jan; 225():117524. PubMed ID: 33147510 [TBL] [Abstract][Full Text] [Related]
36. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging. Di X; Biswal BB Neuroimage; 2014 Feb; 86():53-9. PubMed ID: 23927904 [TBL] [Abstract][Full Text] [Related]
37. A NIRS-fMRI study of resting state network. Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670 [TBL] [Abstract][Full Text] [Related]
38. Connectome-based predictive models using resting-state fMRI for studying brain aging. Kim E; Kim S; Kim Y; Cha H; Lee HJ; Lee T; Chang Y Exp Brain Res; 2022 Sep; 240(9):2389-2400. PubMed ID: 35922524 [TBL] [Abstract][Full Text] [Related]
39. Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter? Koch W; Teipel S; Mueller S; Buerger K; Bokde AL; Hampel H; Coates U; Reiser M; Meindl T Neuroimage; 2010 May; 51(1):280-7. PubMed ID: 20004726 [TBL] [Abstract][Full Text] [Related]
40. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging. White T; Muetzel R; Schmidt M; Langeslag SJ; Jaddoe V; Hofman A; Calhoun VD; Verhulst FC; Tiemeier H Brain Connect; 2014 Aug; 4(6):417-27. PubMed ID: 24874884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]