These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37885250)

  • 1. Artificial augmented dataset for the enhancement of nano-QSARs models. A methodology based on topological projections.
    Furxhi I; Kalapus M; Costa A; Puzyn T
    Nanotoxicology; 2023; 17(6-7):529-544. PubMed ID: 37885250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability.
    Furxhi I; Willighagen E; Evelo C; Costa A; Gardini D; Ammar A
    NanoImpact; 2023 Jul; 31():100475. PubMed ID: 37423508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for
    Afantitis A; Melagraki G; Isigonis P; Tsoumanis A; Varsou DD; Valsami-Jones E; Papadiamantis A; Ellis LA; Sarimveis H; Doganis P; Karatzas P; Tsiros P; Liampa I; Lobaskin V; Greco D; Serra A; Kinaret PAS; Saarimäki LA; Grafström R; Kohonen P; Nymark P; Willighagen E; Puzyn T; Rybinska-Fryca A; Lyubartsev A; Alstrup Jensen K; Brandenburg JG; Lofts S; Svendsen C; Harrison S; Maier D; Tamm K; Jänes J; Sikk L; Dusinska M; Longhin E; Rundén-Pran E; Mariussen E; El Yamani N; Unger W; Radnik J; Tropsha A; Cohen Y; Leszczynski J; Ogilvie Hendren C; Wiesner M; Winkler D; Suzuki N; Yoon TH; Choi JS; Sanabria N; Gulumian M; Lynch I
    Comput Struct Biotechnol J; 2020; 18():583-602. PubMed ID: 32226594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building species trait-specific nano-QSARs: Model stacking, navigating model uncertainties and limitations, and the effect of dataset size.
    Balraadjsing S; J G M Peijnenburg W; Vijver MG
    Environ Int; 2024 Jun; 188():108764. PubMed ID: 38788418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials.
    Singh AV; Shelar A; Rai M; Laux P; Thakur M; Dosnkyi I; Santomauro G; Singh AK; Luch A; Patil R; Bill J
    J Agric Food Chem; 2024 Feb; 72(6):2835-2852. PubMed ID: 38315814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-QSARs 2.0: Unlocking a new level of predictive power for machine learning-based ecotoxicity predictions by exploiting chemical and biological information.
    Zubrod JP; Galic N; Vaugeois M; Dreier DA
    Environ Int; 2024 Apr; 186():108607. PubMed ID: 38593686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guidance for good practice in the application of machine learning in development of toxicological quantitative structure-activity relationships (QSARs).
    Belfield SJ; Cronin MTD; Enoch SJ; Firman JW
    PLoS One; 2023; 18(5):e0282924. PubMed ID: 37163504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna.
    Varsou DD; Ellis LA; Afantitis A; Melagraki G; Lynch I
    Chemosphere; 2021 Dec; 285():131452. PubMed ID: 34265725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of applicability of existing approaches to predicting the bioaccumulation of conventional substances in nanomaterials.
    Utembe W; Wepener V; Yu IJ; Gulumian M
    Environ Toxicol Chem; 2018 Dec; 37(12):2972-2988. PubMed ID: 30117187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review.
    Singh AV; Varma M; Laux P; Choudhary S; Datusalia AK; Gupta N; Luch A; Gandhi A; Kulkarni P; Nath B
    Arch Toxicol; 2023 Apr; 97(4):963-979. PubMed ID: 36878992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological regression as an interpretable and efficient tool for quantitative structure-activity relationship modeling.
    Zhang R; Nolte D; Sanchez-Villalobos C; Ghosh S; Pal R
    Nat Commun; 2024 Jun; 15(1):5072. PubMed ID: 38871711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding.
    Liu Y; Lim H; Xie L
    BMC Bioinformatics; 2022 May; 23(Suppl 3):158. PubMed ID: 35501680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Nano-Specific In Silico NAMs: How to Adjust Nano-QSAR to the Recent Advancements of Nanotoxicology?
    Ciura K; Moschini E; Stępnik M; Serchi T; Gutleb A; Jarzyńska K; Jagiello K; Puzyn T
    Small; 2024 Feb; 20(6):e2305581. PubMed ID: 37775952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Machine-Learning-Based Chemoinformatics: A Comprehensive Review.
    Niazi SK; Mariam Z
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of size-dependent electron configuration fingerprint to develop general prediction models for nanomaterials.
    Shin HK; Kim S; Yoon S
    NanoImpact; 2021 Jan; 21():100298. PubMed ID: 35559785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity.
    Balraadjsing S; Peijnenburg WJGM; Vijver MG
    Chemosphere; 2022 Nov; 307(Pt 2):135930. PubMed ID: 35961453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Analysis of QSAR Research Based on Machine Learning Concepts.
    Keyvanpour MR; Shirzad MB
    Curr Drug Discov Technol; 2021; 18(1):17-30. PubMed ID: 32178612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles.
    Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG
    Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish.
    Gousiadou C; Marchese Robinson RL; Kotzabasaki M; Doganis P; Wilkins TA; Jia X; Sarimveis H; Harper SL
    Nanotoxicology; 2021 May; 15(4):446-476. PubMed ID: 33586589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.