These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37886558)
1. Deactivation of ligand-receptor interactions enhancing lymphocyte infiltration drives melanoma resistance to Immune Checkpoint Blockade. Sahni S; Wang B; Wu D; Dhruba SR; Nagy M; Patkar S; Ferreira I; Wang K; Ruppin E bioRxiv; 2023 Sep; ():. PubMed ID: 37886558 [TBL] [Abstract][Full Text] [Related]
2. A machine learning model reveals expansive downregulation of ligand-receptor interactions that enhance lymphocyte infiltration in melanoma with developed resistance to immune checkpoint blockade. Sahni S; Wang B; Wu D; Dhruba SR; Nagy M; Patkar S; Ferreira I; Day CP; Wang K; Ruppin E Nat Commun; 2024 Oct; 15(1):8867. PubMed ID: 39402030 [TBL] [Abstract][Full Text] [Related]
3. A Comprehensive Proteogenomic and Spatial Analysis of Innate and Acquired Resistance of Metastatic Melanoma to Immune Checkpoint Blockade Therapies. Wei S; Du K; Lan H; Yang Z; Deng Y; Wei Z; Frederick DT; Lee J; Labrie M; Tian T; Moll T; Chen Y; Sullivan RJ; Mills G; Boland GM; Flaherty KT; Liu L; Herlyn M; Zhang G bioRxiv; 2024 Sep; ():. PubMed ID: 39314469 [TBL] [Abstract][Full Text] [Related]
4. Leveraging big data of immune checkpoint blockade response identifies novel potential targets. Bareche Y; Kelly D; Abbas-Aghababazadeh F; Nakano M; Esfahani PN; Tkachuk D; Mohammad H; Samstein R; Lee CH; Morris LGT; Bedard PL; Haibe-Kains B; Stagg J Ann Oncol; 2022 Dec; 33(12):1304-1317. PubMed ID: 36055464 [TBL] [Abstract][Full Text] [Related]
5. Clustering by antigen-presenting genes reveals immune landscapes and predicts response to checkpoint immunotherapy. Gong X; Karchin R Sci Rep; 2023 Jan; 13(1):950. PubMed ID: 36653470 [TBL] [Abstract][Full Text] [Related]
7. TUBA1C orchestrates the immunosuppressive tumor microenvironment and resistance to immune checkpoint blockade in clear cell renal cell carcinoma. Li J; Chen M; Tong M; Cao Q Front Immunol; 2024; 15():1457691. PubMed ID: 39301023 [TBL] [Abstract][Full Text] [Related]
8. Klümper N; Ralser DJ; Zarbl R; Schlack K; Schrader AJ; Rehlinghaus M; Hoffmann MJ; Niegisch G; Uhlig A; Trojan L; Steinestel J; Steinestel K; Wirtz RM; Sikic D; Eckstein M; Kristiansen G; Toma M; Hölzel M; Ritter M; Strieth S; Ellinger J; Dietrich D J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34446578 [TBL] [Abstract][Full Text] [Related]
9. Immunogenic cell death signatures from on-treatment tumor specimens predict immune checkpoint therapy response in metastatic melanoma. Zeng H; Jiang Q; Zhang R; Zhuang Z; Wu J; Li Y; Fang Y Sci Rep; 2024 Oct; 14(1):22872. PubMed ID: 39358546 [TBL] [Abstract][Full Text] [Related]
11. Identification of Crucial Gene Modules Related to the Efficiency of Anti-PD-1/PD-L1 Therapy and Comprehensive Analyses of a Novel Signature Based on These Modules. Wang W; Dong D; Chen L; Wang H; Bi B; Liu T Front Genet; 2022; 13():893380. PubMed ID: 35937997 [TBL] [Abstract][Full Text] [Related]
12. A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade. Chen IX; Newcomer K; Pauken KE; Juneja VR; Naxerova K; Wu MW; Pinter M; Sen DR; Singer M; Sharpe AH; Jain RK Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23684-23694. PubMed ID: 32907939 [TBL] [Abstract][Full Text] [Related]
13. MIF inhibition as a strategy for overcoming resistance to immune checkpoint blockade therapy in melanoma. de Azevedo RA; Shoshan E; Whang S; Markel G; Jaiswal AR; Liu A; Curran MA; Travassos LR; Bar-Eli M Oncoimmunology; 2020 Dec; 9(1):1846915. PubMed ID: 33344042 [TBL] [Abstract][Full Text] [Related]
14. A Combination of Biomarkers Predict Response to Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer. Jiang Z; Zhou Y; Huang J Front Immunol; 2021; 12():813331. PubMed ID: 35003141 [TBL] [Abstract][Full Text] [Related]
15. A computational pipeline for identifying gene targets and signalling pathways in cancer cells to improve lymphocyte infiltration and immune checkpoint therapy efficacy. Nasr S; Li L; Asad M; Moridi M; Wang M; Zemp FJ; Mahoney DJ; Wang E EBioMedicine; 2024 Jun; 104():105167. PubMed ID: 38805852 [TBL] [Abstract][Full Text] [Related]
16. Conserved immuno-collagenic subtypes predict response to immune checkpoint blockade. Mei J; Cai Y; Xu R; Li Q; Chu J; Luo Z; Sun Y; Shi Y; Xu J; Li D; Liang S; Jiang Y; Liu J; Qian Z; Zhou J; Wan M; Yang Y; Zhu Y; Zhang Y; Yin Y Cancer Commun (Lond); 2024 May; 44(5):554-575. PubMed ID: 38507505 [TBL] [Abstract][Full Text] [Related]
17. Blocking LTB Yan J; Zhu J; Li X; Yang R; Xiao W; Huang C; Zheng C Phytomedicine; 2023 Oct; 119():154968. PubMed ID: 37531900 [TBL] [Abstract][Full Text] [Related]
18. A risk score combining co-expression modules related to myeloid cells and alternative splicing associates with response to PD-1/PD-L1 blockade in non-small cell lung cancer. Han Y; Liu SM; Jin R; Meng W; Wu YL; Li H Front Immunol; 2023; 14():1178193. PubMed ID: 37492578 [TBL] [Abstract][Full Text] [Related]
19. Prognostic model incorporating immune checkpoint genes to predict the immunotherapy efficacy for lung adenocarcinoma: a cohort study integrating machine learning algorithms. Yang XL; Zeng Z; Wang C; Wang GY; Zhang FQ Immunol Res; 2024 Aug; 72(4):851-863. PubMed ID: 38755433 [TBL] [Abstract][Full Text] [Related]