These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37886722)
1. Surface-Modified Nano-Hydroxyapatite Uniformly Dispersed on High-Porous GelMA Scaffold Surfaces for Enhanced Osteochondral Regeneration. Zheng S; Li D; Liu Q; Tang C; Hu W; Ma S; Xu Y; Ma Y; Guo Y; Wei B; Du C; Wang L Int J Nanomedicine; 2023; 18():5907-5923. PubMed ID: 37886722 [TBL] [Abstract][Full Text] [Related]
2. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Zhao ZH; Ma XL; Zhao B; Tian P; Ma JX; Kang JY; Zhang Y; Guo Y; Sun L Cell Prolif; 2021 Jul; 54(7):e13043. PubMed ID: 34008897 [TBL] [Abstract][Full Text] [Related]
3. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
4. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration. Zhang P; Chen J; Sun Y; Cao Z; Zhang Y; Mo Q; Yao Q; Zhang W J Mater Chem B; 2023 Feb; 11(6):1240-1261. PubMed ID: 36648128 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
6. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703 [TBL] [Abstract][Full Text] [Related]
7. [Experimental study on tissue engineered cartilage constructed by three-dimensional bioprinted human adipose-derived stem cells combined with gelatin methacryloyl]. Mu L; Zeng J; Huang Y; Lin Y; Jiang H; Teng L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):896-903. PubMed ID: 34308600 [TBL] [Abstract][Full Text] [Related]
8. A novel, self-assembled artificial cartilage-hydroxyapatite conjugate for combined articular cartilage and subchondral bone repair: histopathological analysis of cartilage tissue engineering in rat knee joints. Kumai T; Yui N; Yatabe K; Sasaki C; Fujii R; Takenaga M; Fujiya H; Niki H; Yudoh K Int J Nanomedicine; 2019; 14():1283-1298. PubMed ID: 30863061 [TBL] [Abstract][Full Text] [Related]
9. [Preparation and Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301 [TBL] [Abstract][Full Text] [Related]
10. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications - Characterization and preliminary evaluation of mesenchymal stem cell response in vitro. Klimek K; Benko A; Vandrovcova M; Travnickova M; Douglas TEL; Tarczynska M; Broz A; Gaweda K; Ginalska G; Bacakova L Biomater Adv; 2022 Apr; 135():212724. PubMed ID: 35929204 [TBL] [Abstract][Full Text] [Related]
12. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346 [TBL] [Abstract][Full Text] [Related]
13. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. Song JE; Tripathy N; Lee DH; Park JH; Khang G ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112 [TBL] [Abstract][Full Text] [Related]
14. [Repairing defects of rabbit articular cartilage and subchondral bone with biphasic scaffold combined bone marrow stromal stem cells]. Liu M; Xiang Z; Pei F; Huang F; Cen S; Zhong G; Fan H; Xiao Y; Sun J; Gao Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jan; 24(1):87-93. PubMed ID: 20135980 [TBL] [Abstract][Full Text] [Related]
15. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Lee YH; Wu HC; Yeh CW; Kuan CH; Liao HT; Hsu HC; Tsai JC; Sun JS; Wang TW Acta Biomater; 2017 Nov; 63():210-226. PubMed ID: 28899816 [TBL] [Abstract][Full Text] [Related]
16. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301 [TBL] [Abstract][Full Text] [Related]
17. Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. Zhou XZ; Leung VY; Dong QR; Cheung KM; Chan D; Lu WW Int J Artif Organs; 2008 Jun; 31(6):480-9. PubMed ID: 18609500 [TBL] [Abstract][Full Text] [Related]
18. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Zheng P; Hu X; Lou Y; Tang K Med Sci Monit; 2019 Oct; 25():7361-7369. PubMed ID: 31570688 [TBL] [Abstract][Full Text] [Related]
19. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells]. Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415 [TBL] [Abstract][Full Text] [Related]
20. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]