These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37886813)
61. Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans. Desjardins AE; Maragos CM; Proctor RH J Agric Food Chem; 2006 Sep; 54(19):7383-90. PubMed ID: 16968109 [TBL] [Abstract][Full Text] [Related]
62. Screening of the High-Rhizosphere Competent Ben Slama H; Triki MA; Chenari Bouket A; Ben Mefteh F; Alenezi FN; Luptakova L; Cherif-Silini H; Vallat A; Oszako T; Gharsallah N; Belbahri L Microorganisms; 2019 Aug; 7(8):. PubMed ID: 31405010 [TBL] [Abstract][Full Text] [Related]
63. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Shala-Mayrhofer V; Varga E; Marjakaj R; Berthiller F; Musolli A; Berisha D; Kelmendi B; Lemmens M Food Addit Contam Part B Surveill; 2013; 6(4):237-43. PubMed ID: 24779930 [TBL] [Abstract][Full Text] [Related]
64. Genetic analysis of cob resistance to F. verticillioides: another step towards the protection of maize from ear rot. Mu C; Gao J; Zhou Z; Wang Z; Sun X; Zhang X; Dong H; Han Y; Li X; Wu Y; Song Y; Ma P; Dong C; Chen J; Wu J Theor Appl Genet; 2019 Apr; 132(4):1049-1059. PubMed ID: 30535634 [TBL] [Abstract][Full Text] [Related]
65. Field performance of maize grown from Fusarium verticillioides-inoculated seed. Yates IE; Widstrom NW; Bacon CW; Glenn A; Hinton DM; Sparks D; Jaworski AJ Mycopathologia; 2005 Jan; 159(1):65-73. PubMed ID: 15750733 [TBL] [Abstract][Full Text] [Related]
67. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Agarwal H; Dowarah B; Baruah PM; Bordoloi KS; Krishnatreya DB; Agarwala N Microbiol Res; 2020 Sep; 238():126503. PubMed ID: 32497966 [TBL] [Abstract][Full Text] [Related]
68. Insights into Endophytic and Rhizospheric Bacteria of Five Sugar Beet Hybrids in Terms of Their Diversity, Plant-Growth Promoting, and Biocontrol Properties. Petrović M; Janakiev T; Grbić ML; Unković N; Stević T; Vukićević S; Dimkić I Microb Ecol; 2023 Dec; 87(1):19. PubMed ID: 38148389 [TBL] [Abstract][Full Text] [Related]
69. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
70. Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides. Ma P; Liu E; Zhang Z; Li T; Zhou Z; Yao W; Chen J; Wu J; Xu Y; Zhang H Plant Biotechnol J; 2023 Sep; 21(9):1812-1826. PubMed ID: 37293701 [TBL] [Abstract][Full Text] [Related]
71. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines. Löffler M; Kessel B; Ouzunova M; Miedaner T Theor Appl Genet; 2010 Mar; 120(5):1053-62. PubMed ID: 20035317 [TBL] [Abstract][Full Text] [Related]
72. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335 [TBL] [Abstract][Full Text] [Related]
73. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Figueroa-López AM; Cordero-Ramírez JD; Martínez-Álvarez JC; López-Meyer M; Lizárraga-Sánchez GJ; Félix-Gastélum R; Castro-Martínez C; Maldonado-Mendoza IE Springerplus; 2016; 5():330. PubMed ID: 27066355 [TBL] [Abstract][Full Text] [Related]
74. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Ge C; Tang C; Zhu YX; Wang GF Gene; 2021 Jan; 764():145078. PubMed ID: 32858175 [TBL] [Abstract][Full Text] [Related]
75. In Search of Resistance Against Fusarium Ear Rot: Ferulic Acid Contents in Maize Pericarp Are Associated With Antifungal Activity and Inhibition of Fumonisin Production. Martínez-Fraca J; de la Torre-Hernández ME; Meshoulam-Alamilla M; Plasencia J Front Plant Sci; 2022; 13():852257. PubMed ID: 35463425 [No Abstract] [Full Text] [Related]
76. Screening procedures for selecting rhizobacteria with biocontrol effects upon Fusarium verticillioides growth and fumonisin B1 production. Cavaglieri L; Passone A; Etcheverry M Res Microbiol; 2004 Nov; 155(9):747-54. PubMed ID: 15501652 [TBL] [Abstract][Full Text] [Related]
77. Priming to protect maize from Fusarium verticillioides and its fumonisin accumulation. Aguado A; Savoie JM; Chéreau S; Ducos C; Aguilar M; Ferrer N; Aguilar M; Pinson-Gadais L; Richard-Forget F J Sci Food Agric; 2019 Jan; 99(1):64-72. PubMed ID: 29797333 [TBL] [Abstract][Full Text] [Related]
78. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. de Jong G; Pamplona AKA; Von Pinho RG; Balestre M Genomics; 2018 Sep; 110(5):291-303. PubMed ID: 29223691 [TBL] [Abstract][Full Text] [Related]
79. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Oldenburg E; Höppner F; Ellner F; Weinert J Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556 [TBL] [Abstract][Full Text] [Related]
80. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide. Chen X; Liu J; Chen AJ; Wang L; Jiang X; Gong A; Liu W; Wu H Pest Manag Sci; 2024 Aug; 80(8):4125-4136. PubMed ID: 38578571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]