These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37887141)

  • 1. Open Hardware for Microfluidics: Exploiting Raspberry Pi Singleboard Computer and Camera Systems for Customisable Laboratory Instrumentation.
    Sarıyer RM; Edwards AD; Needs SH
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting open source 3D printer architecture for laboratory robotics to automate high-throughput time-lapse imaging for analytical microbiology.
    Needs SH; Diep TT; Bull SP; Lindley-Decaire A; Ray P; Edwards AD
    PLoS One; 2019; 14(11):e0224878. PubMed ID: 31743346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PiRamid: A compact Raspberry Pi imaging box to automate small-scale time-lapse digital analysis, suitable for laboratory and field use.
    Long MM; Diep TT; Needs SH; Ross MJ; Edwards AD
    HardwareX; 2022 Oct; 12():e00377. PubMed ID: 36437840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MVO Automation Platform: Addressing Unmet Needs in Clinical Laboratories with Microcontrollers, 3D Printing, and Open-Source Hardware/Software.
    Iglehart B
    SLAS Technol; 2018 Oct; 23(5):423-431. PubMed ID: 29746790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.
    Pearce JM; Anzalone NC; Heldt CL
    J Lab Autom; 2016 Aug; 21(4):510-6. PubMed ID: 26763294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open-source and low-cost miniature microscope for on-site fluorescence detection.
    Kawai M; Oda H; Mimura H; Osaki T; Takeuchi S
    HardwareX; 2024 Sep; 19():e00545. PubMed ID: 39006472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Fixed Camera Network for Greenhouse-Based Plant Phenotyping.
    Shakoor N; Mockler TC
    Methods Mol Biol; 2022; 2539():49-56. PubMed ID: 35895195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RaspyControl Lab: A fully open-source and real-time remote laboratory for education in automatic control systems using Raspberry Pi and Python.
    Álvarez Ariza J; Nomesqui Galvis C
    HardwareX; 2023 Mar; 13():e00396. PubMed ID: 36691471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affordable remote monitoring of plant growth in facilities using Raspberry Pi computers.
    Grindstaff B; Mabry ME; Blischak PD; Quinn M; Chris Pires J
    Appl Plant Sci; 2019 Aug; 7(8):e11280. PubMed ID: 31467803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.
    Nuñez I; Matute T; Herrera R; Keymer J; Marzullo T; Rudge T; Federici F
    PLoS One; 2017; 12(11):e0187163. PubMed ID: 29140977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LabNet hardware control software for the Raspberry Pi.
    Schatz A; Winter Y
    Elife; 2022 Dec; 11():. PubMed ID: 36583654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raspberry Pi-powered imaging for plant phenotyping.
    Tovar JC; Hoyer JS; Lin A; Tielking A; Callen ST; Elizabeth Castillo S; Miller M; Tessman M; Fahlgren N; Carrington JC; Nusinow DA; Gehan MA
    Appl Plant Sci; 2018 Mar; 6(3):e1031. PubMed ID: 29732261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automation of cell culture assays using a 3D-printed servomotor-controlled microfluidic valve system.
    Winkler S; Menke J; Meyer KV; Kortmann C; Bahnemann J
    Lab Chip; 2022 Nov; 22(23):4656-4665. PubMed ID: 36342331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An open-source, high-resolution, automated fluorescence microscope.
    Zehrer AC; Martin-Villalba A; Diederich B; Ewers H
    Elife; 2024 Mar; 12():. PubMed ID: 38436658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost, Open-Source, Emoncms-Based SCADA System for a Large Grid-Connected PV System.
    Ahsan L; Baig MJA; Iqbal MT
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments.
    Valle B; Simonneau T; Boulord R; Sourd F; Frisson T; Ryckewaert M; Hamard P; Brichet N; Dauzat M; Christophe A
    Plant Methods; 2017; 13():98. PubMed ID: 29151844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware.
    Aidukas T; Eckert R; Harvey AR; Waller L; Konda PC
    Sci Rep; 2019 May; 9(1):7457. PubMed ID: 31092867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of feasibility of running RSNA's MIRC on a Raspberry Pi: a cost-effective solution for teaching files in radiology.
    Pereira A; Atri M; Rogalla P; Huynh T; O'Malley ME
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1793-801. PubMed ID: 25547256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.