BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 37887287)

  • 21. A novel organic cation transporter involved in paeonol transport across the inner blood-retinal barrier and changes in uptake in high glucose conditions.
    Gyawali A; Kim MH; Kang YS
    Exp Eye Res; 2021 Jan; 202():108387. PubMed ID: 33301773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decursin inhibits VEGF-mediated inner blood-retinal barrier breakdown by suppression of VEGFR-2 activation.
    Kim JH; Kim JH; Lee YM; Ahn EM; Kim KW; Yu YS
    J Cereb Blood Flow Metab; 2009 Sep; 29(9):1559-67. PubMed ID: 19536074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AAV-mediated gene delivery in Dp71-null mouse model with compromised barriers.
    Vacca O; Darche M; Schaffer DV; Flannery JG; Sahel JA; Rendon A; Dalkara D
    Glia; 2014 Mar; 62(3):468-76. PubMed ID: 24382652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions.
    Klaassen I; Van Noorden CJ; Schlingemann RO
    Prog Retin Eye Res; 2013 May; 34():19-48. PubMed ID: 23416119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in drug and nutrient transport across the blood-retinal barrier.
    Kubo Y; Akanuma SI; Hosoya KI
    Expert Opin Drug Metab Toxicol; 2018 May; 14(5):513-531. PubMed ID: 29719158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier.
    Pollock LM; Xie J; Bell BA; Anand-Apte B
    FASEB J; 2018 Oct; 32(10):5674-5684. PubMed ID: 29874129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization and quantitation of blood-retinal barrier breakdown in experimental proliferative vitreoretinopathy.
    Ando N; Sen HA; Berkowitz BA; Wilson CA; de Juan E
    Arch Ophthalmol; 1994 Jan; 112(1):117-22. PubMed ID: 8285878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Canonical WNT signaling components in vascular development and barrier formation.
    Zhou Y; Wang Y; Tischfield M; Williams J; Smallwood PM; Rattner A; Taketo MM; Nathans J
    J Clin Invest; 2014 Sep; 124(9):3825-46. PubMed ID: 25083995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adult lead exposure increases blood-retinal permeability: A risk factor for retinal vascular disease.
    Shen XF; Huang P; Fox DA; Lin Y; Zhao ZH; Wang W; Wang JY; Liu XQ; Chen JY; Luo WJ
    Neurotoxicology; 2016 Dec; 57():145-152. PubMed ID: 27663850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estrogen attenuates VEGF-initiated blood-retina barrier breakdown in male rats.
    Chen X; Zhang M; Jiang C; Guo W; Liu H; Wei S
    Horm Metab Res; 2011 Aug; 43(9):614-8. PubMed ID: 21823056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Β-alanine and l-histidine transport across the inner blood-retinal barrier: potential involvement in L-carnosine supply.
    Usui T; Kubo Y; Akanuma S; Hosoya K
    Exp Eye Res; 2013 Aug; 113():135-42. PubMed ID: 23773890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exendin-4 alleviates retinal vascular leakage by protecting the blood-retinal barrier and reducing retinal vascular permeability in diabetic Goto-Kakizaki rats.
    Fan Y; Liu K; Wang Q; Ruan Y; Ye W; Zhang Y
    Exp Eye Res; 2014 Oct; 127():104-16. PubMed ID: 24910901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of azurocidin as a permeability factor in the retina: involvement in VEGF-induced and early diabetic blood-retinal barrier breakdown.
    Skondra D; Noda K; Almulki L; Tayyari F; Frimmel S; Nakazawa T; Kim IK; Zandi S; Thomas KL; Miller JW; Gragoudas ES; Hafezi-Moghadam A
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):726-31. PubMed ID: 18235021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cKit Inhibitor, Masitinib, Prevents Diabetes-Induced Retinal Vascular Leakage.
    Kim SR; Im JE; Jeong JH; Kim JY; Kim JT; Woo SJ; Sung JH; Park SG; Suh W
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1201-6. PubMed ID: 26978025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation.
    Weiner GA; Shah SH; Angelopoulos CM; Bartakova AB; Pulido RS; Murphy A; Nudleman E; Daneman R; Goldberg JL
    Nat Commun; 2019 Jun; 10(1):2477. PubMed ID: 31171770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelial Cell Transcytosis Assay as an In Vitro Model to Evaluate Inner Blood-Retinal Barrier Permeability.
    Bora K; Wang Z; Yemanyi F; Maurya M; Blomfield AK; Tomita Y; Chen J
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35758707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA-126 Reduces Blood-Retina Barrier Breakdown via the Regulation of VCAM-1 and BCL2L11 in Ischemic Retinopathy.
    Bai X; Luo J; Zhang X; Han J; Wang Z; Miao J; Bai Y
    Ophthalmic Res; 2017; 57(3):173-185. PubMed ID: 28076855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome.
    Le V; Abdelmessih G; Dailey WA; Pinnock C; Jobczyk V; Rashingkar R; Drenser KA; Mitton KP
    Cells; 2023 Nov; 12(21):. PubMed ID: 37947657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative MR imaging study of intravitreal sustained release of VEGF in rabbits.
    Alikacem N; Yoshizawa T; Nelson KD; Wilson CA
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1561-9. PubMed ID: 10798677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Newly-established in vitro inner BRB spheroids to elucidate retinal Ang2-linked substance transfer.
    Yamamoto Y; Akanuma SI; Kon H; Endo H; Kubo Y; Hosoya KI
    J Control Release; 2022 Nov; 351():8-21. PubMed ID: 36122894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.