BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37887291)

  • 1. Role of Phytochromes in Red Light-Regulated Alternative Splicing in
    Careno DA; Assaf CH; Eggermont EDC; Canelo M; Cerdán PD; Yanovsky MJ
    Cells; 2023 Oct; 12(20):. PubMed ID: 37887291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochrome controls alternative splicing to mediate light responses in Arabidopsis.
    Shikata H; Hanada K; Ushijima T; Nakashima M; Suzuki Y; Matsushita T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18781-6. PubMed ID: 25512548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Alternative Splicing by Phytochrome.
    Matsushita T
    Methods Mol Biol; 2019; 2026():143-148. PubMed ID: 31317409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SWAP1-SFPS-RRC1 splicing factor complex modulates pre-mRNA splicing to promote photomorphogenesis in
    Kathare PK; Xin R; Ganesan AS; June VM; Reddy ASN; Huq E
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2214565119. PubMed ID: 36282917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis.
    Hu W; Franklin KA; Sharrock RA; Jones MA; Harmer SL; Lagarias JC
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1542-7. PubMed ID: 23302690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction.
    Shikata H; Shibata M; Ushijima T; Nakashima M; Kong SG; Matsuoka K; Lin C; Matsushita T
    Plant J; 2012 Jun; 70(5):727-38. PubMed ID: 22324426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-regulated pre-mRNA splicing in plants.
    Kathare PK; Huq E
    Curr Opin Plant Biol; 2021 Oct; 63():102037. PubMed ID: 33823333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants.
    Legris M; Ince YÇ; Fankhauser C
    Nat Commun; 2019 Nov; 10(1):5219. PubMed ID: 31745087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering a novel function of the CCR4-NOT complex in phytochrome A-mediated light signalling in plants.
    Schwenk P; Sheerin DJ; Ponnu J; Staudt AM; Lesch KL; Lichtenberg E; Medzihradszky KF; Hoecker U; Klement E; Viczián A; Hiltbrunner A
    Elife; 2021 Mar; 10():. PubMed ID: 33783355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis.
    Galvão RM; Li M; Kothadia SM; Haskel JD; Decker PV; Van Buskirk EK; Chen M
    Genes Dev; 2012 Aug; 26(16):1851-63. PubMed ID: 22895253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana.
    Oh S; Montgomery BL
    J Exp Bot; 2013 Dec; 64(18):5457-72. PubMed ID: 24078666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling.
    Park E; Kim J; Lee Y; Shin J; Oh E; Chung WI; Liu JR; Choi G
    Plant Cell Physiol; 2004 Aug; 45(8):968-75. PubMed ID: 15356322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis thaliana life without phytochromes.
    Strasser B; Sánchez-Lamas M; Yanovsky MJ; Casal JJ; Cerdán PD
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4776-81. PubMed ID: 20176939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer.
    Ryu JS; Kim JI; Kunkel T; Kim BC; Cho DS; Hong SH; Kim SH; Fernández AP; Kim Y; Alonso JM; Ecker JR; Nagy F; Lim PO; Song PS; Schäfer E; Nam HG
    Cell; 2005 Feb; 120(3):395-406. PubMed ID: 15707897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.
    Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH
    Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments.
    Mathews S
    Mol Ecol; 2006 Oct; 15(12):3483-503. PubMed ID: 17032252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative Splicing Substantially Diversifies the Transcriptome during Early Photomorphogenesis and Correlates with the Energy Availability in Arabidopsis.
    Hartmann L; Drewe-Boß P; Wießner T; Wagner G; Geue S; Lee HC; Obermüller DM; Kahles A; Behr J; Sinz FH; Rätsch G; Wachter A
    Plant Cell; 2016 Nov; 28(11):2715-2734. PubMed ID: 27803310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings.
    von Lintig J; Welsch R; Bonk M; Giuliano G; Batschauer A; Kleinig H
    Plant J; 1997 Sep; 12(3):625-34. PubMed ID: 9351247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome A is an irradiance-dependent red light sensor.
    Franklin KA; Allen T; Whitelam GC
    Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.