These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37887597)

  • 1. Interfacial Dynamics in Dual Channels: Inspired by Cuttlebone.
    Huang M; Frohlich K; Esmaili E; Yang T; Li L; Jung S
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish.
    Yang T; Jia Z; Chen H; Deng Z; Liu W; Chen L; Li L
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23450-23459. PubMed ID: 32913055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study.
    Lee E; Jia Z; Yang T; Li L
    Acta Biomater; 2022 Dec; 154():312-323. PubMed ID: 36184057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae).
    Sherrard KM
    Biol Bull; 2000 Jun; 198(3):404-14. PubMed ID: 10897454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and morphogenesis of a cuttlebone's aragonite biomineral structures for the common cuttlefish (Sepia officinalis) on the nanoscale: Revisited.
    Čadež V; Škapin SD; Leonardi A; Križaj I; Kazazić S; Salopek-Sondi B; Sondi I
    J Colloid Interface Sci; 2017 Dec; 508():95-104. PubMed ID: 28822865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuttlefish Buoyancy in Response to Food Availability and Ocean Acidification.
    Otjacques E; Repolho T; Paula JR; Simão S; Baptista M; Rosa R
    Biology (Basel); 2020 Jul; 9(7):. PubMed ID: 32630264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor.
    Checa AG; Cartwright JH; Sánchez-Almazo I; Andrade JP; Ruiz-Raya F
    Sci Rep; 2015 Jun; 5():11513. PubMed ID: 26086668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone.
    Le Pabic C; Marie A; Marie B; Percot A; Bonnaud-Ponticelli L; Lopez PJ; Luquet G
    J Proteomics; 2017 Jan; 150():63-73. PubMed ID: 27576138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically Efficient Cellular Materials Inspired by Cuttlebone.
    Mao A; Zhao N; Liang Y; Bai H
    Adv Mater; 2021 Apr; 33(15):e2007348. PubMed ID: 33675262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics of Shell Matrix Proteins from the Cuttlefish Bone Reveals Unique Evolution for Cephalopod Biomineralization.
    Liu C; Ji X; Huang J; Wang Z; Liu Y; Hincke MT
    ACS Biomater Sci Eng; 2023 Apr; 9(4):1796-1807. PubMed ID: 34468131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Calcination of
    Thum JY; Sin LT; Bee ST; Lim JV; Bee SL
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired lightweight cellular materials--understanding effects of natural variation on mechanical properties.
    Cadman J; Chang CC; Chen J; Chen Y; Zhou S; Li W; Li Q
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3146-52. PubMed ID: 23706194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of organic components in cuttlebone on the morphological and mechanical properties of peroxide cross-linked cuttlebone/natural rubber composites.
    Chongcharoenchaikul T; Miyaji K; Junkong P; Poompradub S; Ikeda Y
    RSC Adv; 2022 May; 12(22):13557-13565. PubMed ID: 35530387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on functional mechanical performance of array structures inspired by cuttlebone.
    Wu F; Sun BH
    J Mech Behav Biomed Mater; 2022 Dec; 136():105459. PubMed ID: 36302273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of ocean acidification on the eye, cuttlebone and behaviors of juvenile cuttlefish (Sepiella inermis).
    Xie J; Sun X; Li P; Zhou T; Jiang R; Wang X
    Mar Pollut Bull; 2023 May; 190():114831. PubMed ID: 36944286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic Modification of Biomass Cuttlebone Applied to Oil Spill Remediation.
    Xu J; Che P; Zhang H; Zhang Y; Wu J; Li W; He J; Ma Z; Li T; Dong Y; Yu J; Tong R
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral laterality and morphological asymmetry in the cuttlefish, Sepia lycidas.
    Lucky NS; Ihara R; Yamaoka K; Hori M
    Zoolog Sci; 2012 May; 29(5):286-92. PubMed ID: 22559961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saffman-Taylor-like instability in a narrow gap induced by dielectric barrier discharge.
    Hou SY; Chu HY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013101. PubMed ID: 26274288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.