BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37887616)

  • 1. A Retrospective of Project Robo Raven: Developing New Capabilities for Enhancing the Performance of Flapping Wing Aerial Vehicles.
    Bruck HA; Gupta SK
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
    Hawkes EW; Lentink D
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27707903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Analysis of a Simple Flexible Wing-Thorax System in Flapping-Wing Insects.
    Cote B; Weston S; Jankauski M
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a Dielectric Elastomer Resonator Driven Flapping Wing Micro Air Vehicle.
    Cao C; Burgess S; Conn AT
    Front Robot AI; 2018; 5():137. PubMed ID: 33501015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
    Bergou AJ; Swartz SM; Vejdani H; Riskin DK; Reimnitz L; Taubin G; Breuer KS
    PLoS Biol; 2015; 13(11):e1002297. PubMed ID: 26569116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow visualization and force measurement of the clapping effect in bio-inspired flying robots.
    Balta M; Deb D; Taha HE
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34584023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insect-like flapping wing mechanism based on a double spherical Scotch yoke.
    Galiński C; Zbikowski R
    J R Soc Interface; 2005 Jun; 2(3):223-35. PubMed ID: 16849181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First lift-off and flight performance of a tailless flapping-wing aerial robot in high-altitude environments.
    Tsuchiya S; Aono H; Asai K; Nonomura T; Ozawa Y; Anyoji M; Ando N; Kang CK; Pohly J
    Sci Rep; 2023 Jun; 13(1):8995. PubMed ID: 37268720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 14. Elastic wing deformations mitigate flapping asymmetry during manoeuvres in rose chafers (
    Meresman Y; Ribak G
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33168594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling Bioinspired Mars Flight Vehicles for Hover.
    Pohly JA; Kang CK; Sridhar MK; Landrum DB; Fahimi F; Mesmer B; Bluman JE; Aono H; Lee T
    AIAA Atmos Flight Mech Conf 2019 (2019); 2019 Jan; 2019():. PubMed ID: 35072170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic analysis of hummingbird-like hovering flight.
    Haider N; Shahzad A; Qadri MNM; Shams TA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of incorporating wing veins on soft wings for flapping micro air vehicles.
    Ishiguro R; Kawasetsu T; Hosoda K
    Front Robot AI; 2023; 10():1243238. PubMed ID: 37609666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators.
    Chen Y; Arase C; Ren Z; Chirarattananon P
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of insect-inspired wing micro air vehicle.
    Song F; Yan Y; Sun J
    Arthropod Struct Dev; 2023 Jan; 72():101225. PubMed ID: 36464577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.