BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37887913)

  • 1. Cu
    Zhang Y; Zhou S; Sun K
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO
    Zhou S; Sun K; Huang J; Lu X; Xie B; Zhang D; Hart JN; Toe CY; Hao X; Amal R
    Small; 2021 Aug; 17(31):e2100496. PubMed ID: 34173332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facet-dependent CO
    Zhang R; Wen X; Peng H; Xia Y; Xu F; Sun L
    Phys Chem Chem Phys; 2021 Dec; 24(1):48-55. PubMed ID: 34580699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Convenient In Situ Preparation of Cu
    Li KX; Li CH; Shi HY; Chen R; She AS; Yang Y; Jiang X; Chen YX; Lu CZ
    Molecules; 2024 May; 29(11):. PubMed ID: 38893390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a Kesterite-Based Photocathode for Photoelectrochemical Ammonia Synthesis from NO
    Zhou S; Sun K; Toe CY; Yin J; Huang J; Zeng Y; Zhang D; Chen W; Mohammed OF; Hao X; Amal R
    Adv Mater; 2022 Jul; 34(29):e2201670. PubMed ID: 35606154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress and Perspectives on Photocathode Materials for CO
    Xu K; Zhang Q; Zhou X; Zhu M; Chen H
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Charge Separation in Nanocrystalline Cu2ZnSnS4 Photocathodes for Photoelectrochemical Application: The Role of Surface Modifications.
    Guijarro N; Prévot MS; Sivula K
    J Phys Chem Lett; 2014 Nov; 5(21):3902-8. PubMed ID: 26278767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented Z scheme blueprint for efficient solar water splitting system using quaternary chalcogenide absorber material.
    Sarswat PK; Bhattacharyya D; Free ML; Misra M
    Phys Chem Chem Phys; 2016 Feb; 18(5):3788-803. PubMed ID: 26762553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.
    Zhang X; Wu X; Centeno A; Ryan MP; Alford NM; Riley DJ; Xie F
    Sci Rep; 2016 Mar; 6():23364. PubMed ID: 26997140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally friendly Cu
    Wang K; Huang D; Yu L; Gu H; Ikeda S; Jiang F
    J Colloid Interface Sci; 2019 Feb; 536():9-16. PubMed ID: 30342410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer.
    Arai T; Tajima S; Sato S; Uemura K; Morikawa T; Kajino T
    Chem Commun (Camb); 2011 Dec; 47(47):12664-6. PubMed ID: 22042496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of incorporation of Ag into a kesterite Cu
    Ikeda S; Nguyen TH; Okamoto R; Remeika M; Abdellaoui I; Islam MM; Harada T; Abe R; Sakurai T
    Phys Chem Chem Phys; 2021 Dec; 24(1):468-476. PubMed ID: 34901980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Organic Framework Coating Enhances the Performance of Cu
    Deng X; Li R; Wu S; Wang L; Hu J; Ma J; Jiang W; Zhang N; Zheng X; Gao C; Wang L; Zhang Q; Zhu J; Xiong Y
    J Am Chem Soc; 2019 Jul; 141(27):10924-10929. PubMed ID: 31200598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO
    DuChene JS; Tagliabue G; Welch AJ; Li X; Cheng WH; Atwater HA
    Nano Lett; 2020 Apr; 20(4):2348-2358. PubMed ID: 32134672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation.
    Jiang F; Gunawan ; Harada T; Kuang Y; Minegishi T; Domen K; Ikeda S
    J Am Chem Soc; 2015 Oct; 137(42):13691-7. PubMed ID: 26479423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently Grafting Graphene onto Si Photocathode to Expedite Aqueous Photoelectrochemical CO
    Wei Z; Su Y; Pan W; Shen J; Fan R; Yang W; Deng Z; Shen M; Peng Y
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202305558. PubMed ID: 37173611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenization of Cu
    Wang X; Xie Y; Bateer B; Pan K; Jiao Y; Xiong N; Wang S; Fu H
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37662-37670. PubMed ID: 29019395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation.
    Choi Y; Baek M; Zhang Z; Dao VD; Choi HS; Yong K
    Nanoscale; 2015 Oct; 7(37):15291-9. PubMed ID: 26327311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steering the Pathway of Plasmon-Enhanced Photoelectrochemical CO
    Wang K; Fan N; Xu B; Wei Z; Chen C; Xie H; Ye W; Peng Y; Shen M; Fan R
    Small; 2022 May; 18(20):e2201882. PubMed ID: 35435325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and electronic properties of the heterointerfaces for Cu2ZnSnS4 photovoltaic cells: a density-functional theory study.
    Xiao W; Wang JN; Wang JW; Huang GJ; Cheng L; Jiang LJ; Wang LG
    Phys Chem Chem Phys; 2016 Apr; 18(17):12029-34. PubMed ID: 27067113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.