These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 37888283)

  • 21. Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology.
    Zhang S; Guo F; Yan W; Dai Z; Dong W; Zhou J; Zhang W; Xin F; Jiang M
    Front Bioeng Biotechnol; 2019; 7():459. PubMed ID: 32047743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers.
    Weninger A; Fischer JE; Raschmanová H; Kniely C; Vogl T; Glieder A
    J Cell Biochem; 2018 Apr; 119(4):3183-3198. PubMed ID: 29091307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism.
    Zhang Q; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Yao B; Bai Y; Zhang J
    Microb Cell Fact; 2022 Jun; 21(1):112. PubMed ID: 35659241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Pichia pastoris.
    Peña DA; Gasser B; Zanghellini J; Steiger MG; Mattanovich D
    Metab Eng; 2018 Nov; 50():2-15. PubMed ID: 29704654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9 advances engineering of microbial cell factories.
    Jakočiūnas T; Jensen MK; Keasling JD
    Metab Eng; 2016 Mar; 34():44-59. PubMed ID: 26707540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.
    Prabhu AA; Boro B; Bharali B; Chakraborty S; Dasu VV
    Curr Pharm Biotechnol; 2017; 18(15):1200-1223. PubMed ID: 29595107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-Mediated Homology-Directed Genome Editing in Pichia pastoris.
    Gassler T; Heistinger L; Mattanovich D; Gasser B; Prielhofer R
    Methods Mol Biol; 2019; 1923():211-225. PubMed ID: 30737742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production.
    Ahmad M; Hirz M; Pichler H; Schwab H
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5301-17. PubMed ID: 24743983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pichia pastoris as a Versatile Cell Factory for the Production of Industrial Enzymes and Chemicals: Current Status and Future Perspectives.
    Zhu T; Sun H; Wang M; Li Y
    Biotechnol J; 2019 Jun; 14(6):e1800694. PubMed ID: 31066190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening and characterization of integration sites based on CRISPR-Cpf1 in
    Ruan S; Yang Y; Zhang X; Luo G; Lin Y; Liang S
    Synth Syst Biotechnol; 2024 Dec; 9(4):759-765. PubMed ID: 39007090
    [No Abstract]   [Full Text] [Related]  

  • 32. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 33. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.
    Wagner JM; Alper HS
    Fungal Genet Biol; 2016 Apr; 89():126-136. PubMed ID: 26701310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.
    Löbs AK; Schwartz C; Wheeldon I
    Synth Syst Biotechnol; 2017 Sep; 2(3):198-207. PubMed ID: 29318200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant protein production.
    Bollok M; Resina D; Valero F; Ferrer P
    Recent Pat Biotechnol; 2009; 3(3):192-201. PubMed ID: 19747151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of GFP using Pichia pastoris vectors with zeocin or G-418 sulphate as the primary selectable marker.
    Papakonstantinou T; Harris S; Hearn MT
    Yeast; 2009 Jun; 26(6):311-21. PubMed ID: 19399907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.