These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37888349)

  • 1. Polymeric Materials for Rare Earth Elements Recovery.
    Zhang H; Gao Y
    Gels; 2023 Sep; 9(10):. PubMed ID: 37888349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare Earth Elements Uptake by Synthetic Polymeric and Cellulose-Based Materials: A Review.
    Salfate G; Sánchez J
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives.
    Ambaye TG; Vaccari M; Castro FD; Prasad S; Rtimi S
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36052-36074. PubMed ID: 32617815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery.
    Zhang Y; Yan J; Xu J; Tian C; Matyjaszewski K; Tilton RD; Lowry GV
    Environ Sci Technol; 2021 Sep; 55(18):12549-12560. PubMed ID: 34464106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources.
    Fathollahzadeh H; Eksteen JJ; Kaksonen AH; Watkin ELJ
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1043-1057. PubMed ID: 30488284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements.
    Ye Q; Jin X; Zhu B; Gao H; Wei N
    Environ Sci Technol; 2023 Mar; 57(10):4276-4285. PubMed ID: 36790366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage.
    Wilfong WC; Ji T; Duan Y; Shi F; Wang Q; Gray ML
    J Hazard Mater; 2022 Feb; 424(Pt C):127625. PubMed ID: 34857400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rare Earth Elements Recovery Using Selective Membranes via Extraction and Rejection.
    Bashiri A; Nikzad A; Maleki R; Asadnia M; Razmjou A
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the Circular Economy of Rare Earth Elements: A Review of Abundance, Extraction, Applications, and Environmental Impacts.
    Dang DH; Thompson KA; Ma L; Nguyen HQ; Luu ST; Duong MTN; Kernaghan A
    Arch Environ Contam Toxicol; 2021 Nov; 81(4):521-530. PubMed ID: 34170356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare-earth elements in the circular economy: The case of yttrium.
    Favot M; Massarutto A
    J Environ Manage; 2019 Jun; 240():504-510. PubMed ID: 30974293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Latest Achievements of Liquid Membranes for Rare Earth Elements Recovery from Aqueous Solutions-A Mini Review.
    Kaczorowska MA
    Membranes (Basel); 2023 Oct; 13(10):. PubMed ID: 37888011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area.
    Liu WS; Guo MN; Liu C; Yuan M; Chen XT; Huot H; Zhao CM; Tang YT; Morel JL; Qiu RL
    Chemosphere; 2019 Feb; 216():75-83. PubMed ID: 30359919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective and fast recovery of rare earth elements from industrial wastewater by porous β-cyclodextrin and magnetic β-cyclodextrin polymers.
    Nkinahamira F; Alsbaiee A; Zeng Q; Li Y; Zhang Y; Feng M; Yu CP; Sun Q
    Water Res; 2020 Aug; 181():115857. PubMed ID: 32497755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Critical Review of the Enhanced Recovery of Rare Earth Elements from Phosphogypsum.
    Xie G; Guan Q; Zhou F; Yu W; Yin Z; Tang H; Zhang Z; Chi R
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global demand for rare earth resources and strategies for green mining.
    Dutta T; Kim KH; Uchimiya M; Kwon EE; Jeon BH; Deep A; Yun ST
    Environ Res; 2016 Oct; 150():182-190. PubMed ID: 27295408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of Rare Earth Elements by Carbon-Based Nanomaterials-A Review.
    Cardoso CED; Almeida JC; Lopes CB; Trindade T; Vale C; Pereira E
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31146505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological leaching of rare earth elements.
    Mowafy AM
    World J Microbiol Biotechnol; 2020 Apr; 36(4):61. PubMed ID: 32285218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectively auto-regulated adsorption and recovery of rare earth elements via an engineered E. coli.
    Xie X; Tan X; Yu Y; Li Y; Wang P; Liang Y; Yan Y
    J Hazard Mater; 2022 Feb; 424(Pt C):127642. PubMed ID: 34775317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistribution and chemical speciation of rare earth elements in an ion-adsorption rare earth tailing, Southern China.
    Ou X; Chen Z; Chen X; Li X; Wang J; Ren T; Chen H; Feng L; Wang Y; Chen Z; Liang M; Gao P
    Sci Total Environ; 2022 May; 821():153369. PubMed ID: 35077788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE).
    Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.