BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37888357)

  • 1. Self-Standing 3D-Printed PEGDA-PANIs Electroconductive Hydrogel Composites for pH Monitoring.
    Carcione R; Pescosolido F; Montaina L; Toschi F; Orlanducci S; Tamburri E; Battistoni S
    Gels; 2023 Sep; 9(10):. PubMed ID: 37888357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of conductive polyaniline hydrogel using porogen leaching and projection microstereolithography.
    Wu Y; Chen YX; Yan J; Yang S; Dong P; Soman P
    J Mater Chem B; 2015 Jul; 3(26):5352-5360. PubMed ID: 32262611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel.
    Ulutürk C; Alemdar N
    Carbohydr Polym; 2018 Aug; 193():307-315. PubMed ID: 29773386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable, cytocompatible, elastic, free radical scavenging and electroconductive hydrogel for cardiac cell encapsulation.
    Komeri R; Muthu J
    Colloids Surf B Biointerfaces; 2017 Sep; 157():381-390. PubMed ID: 28623695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration.
    Rajabi M; Cabral JD; Saunderson S; Ali MA
    J Biomed Mater Res A; 2023 Sep; 111(9):1468-1481. PubMed ID: 37066870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects.
    Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H
    Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds.
    Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications.
    Walker BW; Lara RP; Mogadam E; Yu CH; Kimball W; Annabi N
    Prog Polym Sci; 2019 May; 92():135-157. PubMed ID: 32831422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering.
    Hakim Khalili M; Zhang R; Wilson S; Goel S; Impey SA; Aria AI
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Volatile Organic Compounds Adsorption on 3D-Printed PEGDA:PEDOT for Long-Term Monitoring Devices.
    Scordo G; Bertana V; Ballesio A; Carcione R; Marasso SL; Cocuzza M; Pirri CF; Manachino M; Gomez Gomez M; Vitale A; Chiodoni A; Tamburri E; Scaltrito L
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33406608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.
    Testore D; Zoso A; Kortaberria G; Sangermano M; Chiono V
    Front Bioeng Biotechnol; 2022; 10():897575. PubMed ID: 35814009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration.
    Guarino V; Alvarez-Perez MA; Borriello A; Napolitano T; Ambrosio L
    Adv Healthc Mater; 2013 Jan; 2(1):218-27. PubMed ID: 23184787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of conductive gelatin methacrylate-polyaniline hydrogels.
    Wu Y; Chen YX; Yan J; Quinn D; Dong P; Sawyer SW; Soman P
    Acta Biomater; 2016 Mar; 33():122-30. PubMed ID: 26821341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed bio-ceramic loaded PEGDA/vitreous carbon composite: Fabrication, characterization, and life cycle assessment.
    Kumar M; Sharma V
    J Mech Behav Biomed Mater; 2023 Jul; 143():105904. PubMed ID: 37178637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the degree of polymerization and water content on the thermal transport phenomena in PEGDA hydrogel: a molecular-dynamics-based study.
    Kumar R; Parashar A
    Phys Chem Chem Phys; 2023 Jul; 25(28):18960-18972. PubMed ID: 37409672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel.
    Bao Z; Gao M; Fan X; Cui Y; Yang J; Peng X; Xian M; Sun Y; Nian R
    Int J Biol Macromol; 2020 Jul; 155():163-173. PubMed ID: 32229213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of PEGDA photopolymerization in micro-stereolithography on 3D printed hydrogel structure and swelling.
    Alketbi AS; Shi Y; Li H; Raza A; Zhang T
    Soft Matter; 2021 Aug; 17(30):7188-7195. PubMed ID: 34269366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.