These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37888764)

  • 61. Discovering Quantum Phase Transitions with Fermionic Neural Networks.
    Cassella G; Sutterud H; Azadi S; Drummond ND; Pfau D; Spencer JS; Foulkes WMC
    Phys Rev Lett; 2023 Jan; 130(3):036401. PubMed ID: 36763402
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Solving fermion problems without solving the sign problem: Symmetry-breaking wave functions from similarity-transformed propagators for solving two-dimensional quantum dots.
    Chin SA
    Phys Rev E; 2020 Apr; 101(4-1):043304. PubMed ID: 32422780
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electronic energies from coupled fermionic "Zombie" states' imaginary time evolution.
    Bramley OA; Hele TJH; Shalashilin DV
    J Chem Phys; 2022 May; 156(17):174116. PubMed ID: 35525640
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit.
    Dornheim T; Groth S; Sjostrom T; Malone FD; Foulkes WM; Bonitz M
    Phys Rev Lett; 2016 Oct; 117(15):156403. PubMed ID: 27768371
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fast and scalable quantum Monte Carlo simulations of electron-phonon models.
    Cohen-Stead B; Bradley O; Miles C; Batrouni G; Scalettar R; Barros K
    Phys Rev E; 2022 Jun; 105(6-2):065302. PubMed ID: 35854479
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gaussian quantum Monte Carlo methods for fermions and bosons.
    Corney JF; Drummond PD
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):260401. PubMed ID: 15697955
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rotational fluctuation of molecules in quantum clusters. I. Path integral hybrid Monte Carlo algorithm.
    Miura S
    J Chem Phys; 2007 Mar; 126(11):114308. PubMed ID: 17381207
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.
    Wang Q; Hammes-Schiffer S
    J Chem Phys; 2006 Nov; 125(18):184102. PubMed ID: 17115733
    [TBL] [Abstract][Full Text] [Related]  

  • 69. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Path integral hybrid Monte Carlo algorithm for correlated Bose fluids.
    Miura S; Tanaka J
    J Chem Phys; 2004 Feb; 120(5):2160-8. PubMed ID: 15268354
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Machine learning quantum phases of matter beyond the fermion sign problem.
    Broecker P; Carrasquilla J; Melko RG; Trebst S
    Sci Rep; 2017 Aug; 7(1):8823. PubMed ID: 28821785
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas.
    Zhang S; Militzer B; Benedict LX; Soubiran F; Sterne PA; Driver KP
    J Chem Phys; 2018 Mar; 148(10):102318. PubMed ID: 29544329
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Majorana-Time-Reversal Symmetries: A Fundamental Principle for Sign-Problem-Free Quantum Monte Carlo Simulations.
    Li ZX; Jiang YF; Yao H
    Phys Rev Lett; 2016 Dec; 117(26):267002. PubMed ID: 28059531
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Path integral methods for rotating molecules in superfluids.
    Zillich RE; Paesani F; Kwon Y; Whaley KB
    J Chem Phys; 2005 Sep; 123(11):114301. PubMed ID: 16392553
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. II. Transport across impurities.
    Mühlbacher L; Ankerhold J
    J Chem Phys; 2005 May; 122(18):184715. PubMed ID: 15918755
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reaching the Continuum Limit in Finite-Temperature Ab Initio Field-Theory Computations in Many-Fermion Systems.
    He YY; Shi H; Zhang S
    Phys Rev Lett; 2019 Sep; 123(13):136402. PubMed ID: 31697528
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations.
    Wang L; Liu YH; Iazzi M; Troyer M; Harcos G
    Phys Rev Lett; 2015 Dec; 115(25):250601. PubMed ID: 26722910
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fermionic quantum processing with programmable neutral atom arrays.
    González-Cuadra D; Bluvstein D; Kalinowski M; Kaubruegger R; Maskara N; Naldesi P; Zache TV; Kaufman AM; Lukin MD; Pichler H; Vermersch B; Ye J; Zoller P
    Proc Natl Acad Sci U S A; 2023 Aug; 120(35):e2304294120. PubMed ID: 37607226
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Wavefunction matching for solving quantum many-body problems.
    Elhatisari S; Bovermann L; Ma YZ; Epelbaum E; Frame D; Hildenbrand F; Kim M; Kim Y; Krebs H; Lähde TA; Lee D; Li N; Lu BN; Meißner UG; Rupak G; Shen S; Song YH; Stellin G
    Nature; 2024 Jun; 630(8015):59-63. PubMed ID: 38750357
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials.
    Lindoy LP; Kolmann SJ; D'Arcy JH; Crittenden DL; Jordan MJ
    J Chem Phys; 2015 Nov; 143(19):194302. PubMed ID: 26590532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.