These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37888874)
1. Cooperativity and Frustration Effects (or Lack Thereof) in Polarizable and Non-polarizable Force Fields. Nochebuena J; Piquemal JP; Liu S; Cisneros GA J Chem Theory Comput; 2023 Nov; 19(21):7715-7730. PubMed ID: 37888874 [TBL] [Abstract][Full Text] [Related]
2. Relative cooperativity in neutral and charged molecular clusters using QM/MM calculations. Nochebuena J; Liu S; Cisneros GA J Chem Phys; 2024 Apr; 160(13):. PubMed ID: 38557841 [TBL] [Abstract][Full Text] [Related]
3. Pairwise-additive and polarizable atomistic force fields for molecular dynamics simulations of proteins. Lemkul JA Prog Mol Biol Transl Sci; 2020; 170():1-71. PubMed ID: 32145943 [TBL] [Abstract][Full Text] [Related]
4. Advancement of polarizable force field and its use for molecular modeling and design. Xu P; Wang J; Xu Y; Chu H; Liu J; Zhao M; Zhang D; Mao Y; Li B; Ding Y; Li G Adv Exp Med Biol; 2015; 827():19-32. PubMed ID: 25387957 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic polarization is crucial in reproducing Cu(I) interaction energies and hydration. Ponomarev SY; Click TH; Kaminski GA J Phys Chem B; 2011 Aug; 115(33):10079-85. PubMed ID: 21761909 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. Davis JE; Rahaman O; Patel S Biophys J; 2009 Jan; 96(2):385-402. PubMed ID: 19167291 [TBL] [Abstract][Full Text] [Related]
7. Developing and Benchmarking Sulfate and Sulfamate Force Field Parameters via Ab Initio Molecular Dynamics Simulations To Accurately Model Glycosaminoglycan Electrostatic Interactions. Riopedre-Fernandez M; Kostal V; Martinek T; Martinez-Seara H; Biriukov D J Chem Inf Model; 2024 Sep; 64(18):7122-7134. PubMed ID: 39250601 [TBL] [Abstract][Full Text] [Related]
8. On the Interplay between Electronic Structure and Polarizable Force Fields When Calculating Solution-Phase Charge-Transfer Rates. Han J; Zhang P; Aksu H; Maiti B; Sun X; Geva E; Dunietz BD; Cheung MS J Chem Theory Comput; 2020 Oct; 16(10):6481-6490. PubMed ID: 32997944 [TBL] [Abstract][Full Text] [Related]
9. Transferability and additivity of dihedral parameters in polarizable and nonpolarizable empirical force fields. Zgarbová M; Rosnik AM; Luque FJ; Curutchet C; Jurečka P J Comput Chem; 2015 Sep; 36(25):1874-84. PubMed ID: 26224547 [TBL] [Abstract][Full Text] [Related]
10. Force Fields for Small Molecules. Lin FY; MacKerell AD Methods Mol Biol; 2019; 2022():21-54. PubMed ID: 31396898 [TBL] [Abstract][Full Text] [Related]
11. Polarizable and nonpolarizable force fields for alkyl nitrates. Borodin O; Smith GD; Sewell TD; Bedrov D J Phys Chem B; 2008 Jan; 112(3):734-42. PubMed ID: 18085767 [TBL] [Abstract][Full Text] [Related]
12. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. Geerke DP; van Gunsteren WF J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737 [TBL] [Abstract][Full Text] [Related]
13. Accurate Reproduction of Quantum Mechanical Many-Body Interactions in Peptide Main-Chain Hydrogen-Bonding Oligomers by the Polarizable Gaussian Multipole Model. Zhao S; Wei H; Cieplak P; Duan Y; Luo R J Chem Theory Comput; 2022 Oct; 18(10):6172-6188. PubMed ID: 36094401 [TBL] [Abstract][Full Text] [Related]
14. Accurate prediction of absolute acidity constants in water with a polarizable force field: substituted phenols, methanol, and imidazole. Kaminski GA J Phys Chem B; 2005 Mar; 109(12):5884-90. PubMed ID: 16851640 [TBL] [Abstract][Full Text] [Related]
15. Critical Evaluation of Polarizable and Nonpolarizable Force Fields for Proteins Using Experimentally Derived Nitrile Electric Fields. Kirsh JM; Weaver JB; Boxer SG; Kozuch J J Am Chem Soc; 2024 Mar; 146(10):6983-6991. PubMed ID: 38415598 [TBL] [Abstract][Full Text] [Related]
16. Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. Baker CM; Anisimov VM; MacKerell AD J Phys Chem B; 2011 Jan; 115(3):580-96. PubMed ID: 21166469 [TBL] [Abstract][Full Text] [Related]
17. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. Joung IS; Cheatham TE J Phys Chem B; 2008 Jul; 112(30):9020-41. PubMed ID: 18593145 [TBL] [Abstract][Full Text] [Related]
18. Polarizable empirical force field for sulfur-containing compounds based on the classical Drude oscillator model. Zhu X; MacKerell AD J Comput Chem; 2010 Sep; 31(12):2330-41. PubMed ID: 20575015 [TBL] [Abstract][Full Text] [Related]
19. Polarizable and Non-Polarizable Force Field Representations of Ferric Cation and Validations. Xia M; Chai Z; Wang D J Phys Chem B; 2017 Jun; 121(23):5718-5729. PubMed ID: 28508639 [TBL] [Abstract][Full Text] [Related]
20. Polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models. Leontyev IV; Stuchebrukhov AA J Chem Phys; 2014 Jul; 141(1):014103. PubMed ID: 25005273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]