BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37889068)

  • 21. Flexibility of flanking DNA is a key determinant of transcription factor affinity for the core motif.
    Ghoshdastidar D; Bansal M
    Biophys J; 2022 Oct; 121(20):3987-4000. PubMed ID: 35978548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneity of transcription factor binding specificity models within and across cell lines.
    Sharmin M; Bravo HC; Hannenhalli S
    Genome Res; 2016 Aug; 26(8):1110-23. PubMed ID: 27311443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of transcription factor cooperativity via stochastic system model.
    Chang YH; Wang YC; Chen BS
    Bioinformatics; 2006 Sep; 22(18):2276-82. PubMed ID: 16844711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive prediction in 78 human cell lines reveals rigidity and compactness of transcription factor dimers.
    Jankowski A; Szczurek E; Jauch R; Tiuryn J; Prabhakar S
    Genome Res; 2013 Aug; 23(8):1307-18. PubMed ID: 23554463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The functional consequences of variation in transcription factor binding.
    Cusanovich DA; Pavlovic B; Pritchard JK; Gilad Y
    PLoS Genet; 2014 Mar; 10(3):e1004226. PubMed ID: 24603674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational identification of diverse mechanisms underlying transcription factor-DNA occupancy.
    Cheng Q; Kazemian M; Pham H; Blatti C; Celniker SE; Wolfe SA; Brodsky MH; Sinha S
    PLoS Genet; 2013; 9(8):e1003571. PubMed ID: 23935523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methods for Analysis of Transcription Factor DNA-Binding Specificity In Vitro.
    Jolma A; Taipale J
    Subcell Biochem; 2011; 52():155-73. PubMed ID: 21557082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequence-Specific Structural Features and Solvation Properties of Transcription Factor Binding DNA Motifs: Insights from Molecular Dynamics Simulation.
    Patra P; Gao YQ
    J Phys Chem B; 2022 Nov; 126(45):9187-9206. PubMed ID: 36322688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites.
    Kulakovskiy IV; Belostotsky AA; Kasianov AS; Esipova NG; Medvedeva YA; Eliseeva IA; Makeev VJ
    Bioinformatics; 2011 Oct; 27(19):2621-4. PubMed ID: 21852305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation.
    Cauchy P; Maqbool MA; Zacarias-Cabeza J; Vanhille L; Koch F; Fenouil R; Gut M; Gut I; Santana MA; Griffon A; Imbert J; Moraes-Cabé C; Bories JC; Ferrier P; Spicuglia S; Andrau JC
    Nucleic Acids Res; 2016 May; 44(8):3567-85. PubMed ID: 26673693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competition for DNA binding between paralogous transcription factors determines their genomic occupancy and regulatory functions.
    Zhang Y; Ho TD; Buchler NE; Gordân R
    Genome Res; 2021 Jul; 31(7):1216-1229. PubMed ID: 33975875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of sequence determinants of enhancer function using natural genetic variation.
    Yang MG; Ling E; Cowley CJ; Greenberg ME; Vierbuchen T
    Elife; 2022 Aug; 11():. PubMed ID: 36043696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models.
    Pencovich N; Jaschek R; Tanay A; Groner Y
    Blood; 2011 Jan; 117(1):e1-14. PubMed ID: 20959602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.