BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37889082)

  • 1. Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments.
    Heiranian M; Fan H; Wang L; Lu X; Elimelech M
    Chem Soc Rev; 2023 Dec; 52(24):8455-8480. PubMed ID: 37889082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review.
    Shefer I; Lopez K; Straub AP; Epsztein R
    Environ Sci Technol; 2022 Jun; 56(12):7467-7483. PubMed ID: 35549171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt and Water Transport in Reverse Osmosis Membranes: Beyond the Solution-Diffusion Model.
    Wang L; Cao T; Dykstra JE; Porada S; Biesheuvel PM; Elimelech M
    Environ Sci Technol; 2021 Dec; 55(24):16665-16675. PubMed ID: 34879196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Simulations to Elucidate Transport Phenomena in Polymeric Membranes.
    Heiranian M; DuChanois RM; Ritt CL; Violet C; Elimelech M
    Environ Sci Technol; 2022 Mar; 56(6):3313-3323. PubMed ID: 35235312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination.
    Shahbabaei M; Tang T
    Phys Chem Chem Phys; 2022 Dec; 24(48):29298-29327. PubMed ID: 36453147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism.
    Wang L; He J; Heiranian M; Fan H; Song L; Li Y; Elimelech M
    Sci Adv; 2023 Apr; 9(15):eadf8488. PubMed ID: 37058571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies.
    Liu C; Wang W; Yang B; Xiao K; Zhao H
    Water Res; 2021 May; 195():116976. PubMed ID: 33706215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the life-cycle of reverse osmosis membranes: A review.
    Coutinho de Paula E; Amaral MCS
    Waste Manag Res; 2017 May; 35(5):456-470. PubMed ID: 28097920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the potential of polymeric desalination membranes by understanding molecular-level interactions and transport mechanisms.
    Nickerson TR; Antonio EN; McNally DP; Toney MF; Ban C; Straub AP
    Chem Sci; 2023 Jan; 14(4):751-770. PubMed ID: 36755730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiently Combining Water Reuse and Desalination through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review.
    Blandin G; Verliefde AR; Comas J; Rodriguez-Roda I; Le-Clech P
    Membranes (Basel); 2016 Jul; 6(3):. PubMed ID: 27376337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of antifouling reverse osmosis membranes for water treatment: A review.
    Kang GD; Cao YM
    Water Res; 2012 Mar; 46(3):584-600. PubMed ID: 22154112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulation Study of Polyamide Membrane Structures and RO/FO Water Permeation Properties.
    Yoshioka T; Kotaka K; Nakagawa K; Shintani T; Wu HC; Matsuyama H; Fujimura Y; Kawakatsu T
    Membranes (Basel); 2018 Dec; 8(4):. PubMed ID: 30563257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Transport Mechanism of a Freestanding Graphene Oxide Membrane for Forward Osmosis.
    Liu S; Tong X; Huang L; Hao R; Gao H; Chen Y; Crittenden J
    Environ Sci Technol; 2020 May; 54(9):5802-5812. PubMed ID: 32275400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification.
    Yang Z; Zhou Y; Feng Z; Rui X; Zhang T; Zhang Z
    Polymers (Basel); 2019 Jul; 11(8):. PubMed ID: 31362430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review.
    Zhao DL; Japip S; Zhang Y; Weber M; Maletzko C; Chung TS
    Water Res; 2020 Apr; 173():115557. PubMed ID: 32028249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomaterials-modified reverse osmosis membranes: a comprehensive review.
    Ahmed MA; Mahmoud SA; Mohamed AA
    RSC Adv; 2024 Jun; 14(27):18879-18906. PubMed ID: 38873545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
    Dražević E; Košutić K; Svalina M; Catalano J
    Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse osmosis desalination: water sources, technology, and today's challenges.
    Greenlee LF; Lawler DF; Freeman BD; Marrot B; Moulin P
    Water Res; 2009 May; 43(9):2317-48. PubMed ID: 19371922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient data-driven desalination approach for the element-scale forward osmosis (FO)-reverse osmosis (RO) hybrid systems.
    Im SJ; Viet ND; Lee BT; Jang A
    Environ Res; 2023 Nov; 237(Pt 1):116786. PubMed ID: 37517485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.