These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37889218)
1. Glass Nanopipette-Based Plasmonic SERS Platform for Single-Cell MicroRNA-21 Sensing during Apoptosis. Wang Y; Wang D; Qi G; Hu P; Wang E; Jin Y Anal Chem; 2023 Nov; 95(44):16234-16242. PubMed ID: 37889218 [TBL] [Abstract][Full Text] [Related]
2. DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21. Xu W; Zhang Y; Chen H; Dong J; Khan R; Shen J; Liu H Anal Bioanal Chem; 2022 Jun; 414(14):4079-4088. PubMed ID: 35419693 [TBL] [Abstract][Full Text] [Related]
3. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars. Lee JU; Kim WH; Lee HS; Park KH; Sim SJ Small; 2019 Apr; 15(17):e1804968. PubMed ID: 30828996 [TBL] [Abstract][Full Text] [Related]
4. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Guo J; Sesena Rubfiaro A; Lai Y; Moscoso J; Chen F; Liu Y; Wang X; He J Analyst; 2020 Jul; 145(14):4852-4859. PubMed ID: 32542257 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA. Ma W; Liu L; Zhang X; Liu X; Xu Y; Li S; Zeng M Anal Chim Acta; 2022 Aug; 1221():340139. PubMed ID: 35934371 [TBL] [Abstract][Full Text] [Related]
6. Role of probe design and bioassay configuration in surface enhanced Raman scattering based biosensors for miRNA detection. Novara C; Montesi D; Bertone S; Paccotti N; Geobaldo F; Channab M; Angelini A; Rivolo P; Giorgis F; Chiadò A J Colloid Interface Sci; 2023 Nov; 649():750-760. PubMed ID: 37385040 [TBL] [Abstract][Full Text] [Related]
7. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Kim WH; Lee JU; Jeon MJ; Park KH; Sim SJ Biosens Bioelectron; 2022 Jun; 205():114116. PubMed ID: 35235898 [TBL] [Abstract][Full Text] [Related]
9. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928 [TBL] [Abstract][Full Text] [Related]
10. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA. Wu Y; Li Y; Han H; Zhao C; Zhang X Anal Biochem; 2019 Jan; 564-565():16-20. PubMed ID: 30312618 [TBL] [Abstract][Full Text] [Related]
11. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network. Song C; Zhang J; Jiang X; Gan H; Zhu Y; Peng Q; Fang X; Guo Y; Wang L Biosens Bioelectron; 2021 Oct; 190():113376. PubMed ID: 34098358 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598 [TBL] [Abstract][Full Text] [Related]
13. Nanopipette-Based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells. Hanif S; Liu HL; Ahmed SA; Yang JM; Zhou Y; Pang J; Ji LN; Xia XH; Wang K Anal Chem; 2017 Sep; 89(18):9911-9917. PubMed ID: 28825473 [TBL] [Abstract][Full Text] [Related]
14. A multiple signal amplification sandwich-type SERS biosensor for femtomolar detection of miRNA. Shao H; Lin H; Guo Z; Lu J; Jia Y; Ye M; Su F; Niu L; Kang W; Wang S; Hu Y; Huang Y Biosens Bioelectron; 2019 Oct; 143():111616. PubMed ID: 31472412 [TBL] [Abstract][Full Text] [Related]
15. Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Chen J; Wu Y; Fu C; Cao H; Tan X; Shi W; Wu Z Biosens Bioelectron; 2019 Oct; 143():111619. PubMed ID: 31454694 [TBL] [Abstract][Full Text] [Related]
16. Amplification-Free and Mix-and-Read Analysis of Multiplexed MicroRNAs on a Single Plasmonic Microbead. Lu X; Hu C; Jia D; Fan W; Ren W; Liu C Nano Lett; 2021 Aug; 21(15):6718-6724. PubMed ID: 34324345 [TBL] [Abstract][Full Text] [Related]
17. Plasmonic SERS Au Nanosunflowers for Sensitive and Label-Free Diagnosis of DNA Base Damage in Stimulus-Induced Cell Apoptosis. Qi G; Wang D; Li C; Ma K; Zhang Y; Jin Y Anal Chem; 2020 Sep; 92(17):11755-11762. PubMed ID: 32786448 [TBL] [Abstract][Full Text] [Related]
18. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA. Luo X; Zhu J; Jia W; Fang N; Wu P; Cai C; Zhu JJ ACS Appl Mater Interfaces; 2021 Apr; 13(15):18301-18313. PubMed ID: 33821612 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive and Simultaneous SERS Detection of Multiplex MicroRNA Using Fractal Gold Nanotags for Early Diagnosis and Prognosis of Hepatocellular Carcinoma. Wu J; Zhou X; Li P; Lin X; Wang J; Hu Z; Zhang P; Chen D; Cai H; Niessner R; Haisch C; Sun P; Zheng Y; Jiang Z; Zhou H Anal Chem; 2021 Jun; 93(25):8799-8809. PubMed ID: 34076420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]