These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37889287)

  • 1. Sex differences in muscle contraction-induced limb blood flow limitations.
    Hammer SM; Sears KN; Montgomery TR; Olmos AA; Hill EC; Trevino MA; Dinyer-McNeely TK
    Eur J Appl Physiol; 2024 Apr; 124(4):1121-1129. PubMed ID: 37889287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eccentric exercise-induced muscle weakness abolishes sex differences in fatigability during sustained submaximal isometric contractions.
    Jodoin HL; Hinks A; Roussel OP; Contento VS; Dalton BH; Power GA
    J Sport Health Sci; 2023 Jul; 12(4):523-533. PubMed ID: 36801454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex differences in fatigability and recovery relative to the intensity-duration relationship.
    Ansdell P; Brownstein CG; Škarabot J; Hicks KM; Howatson G; Thomas K; Hunter SK; Goodall S
    J Physiol; 2019 Dec; 597(23):5577-5595. PubMed ID: 31529693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of skeletal muscle mitochondria and sex on critical torque and performance fatiguability in humans.
    McDougall RM; Tripp TR; Frankish BP; Doyle-Baker PK; Lun V; Wiley JP; Aboodarda SJ; MacInnis MJ
    J Physiol; 2023 Dec; 601(23):5295-5316. PubMed ID: 37902588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle function and fatigability of trunk flexors in males and females.
    Deering RE; Senefeld JW; Pashibin T; Neumann DA; Hunter SK
    Biol Sex Differ; 2017; 8():12. PubMed ID: 28428836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Shortening-induced Torque Depression on Fatigue-related Sex Differences.
    Gabel HV; Debenham MIB; Power GA
    Med Sci Sports Exerc; 2020 Apr; 52(4):835-843. PubMed ID: 31688646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular fatigability of plantar flexors following continuous and intermittent contractions.
    Lebesque L; Scaglioni G; Manckoundia P; Martin A
    J Appl Physiol (1985); 2023 May; 134(5):1093-1104. PubMed ID: 36927140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for the increased fatigability of the lower limb in people with type 2 diabetes.
    Senefeld J; Magill SB; Harkins A; Harmer AR; Hunter SK
    J Appl Physiol (1985); 2018 Aug; 125(2):553-566. PubMed ID: 29596017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in central and peripheral fatigue induced by sustained isometric ankle plantar flexion.
    Jo D; Goubran M; Bilodeau M
    J Electromyogr Kinesiol; 2022 Aug; 65():102676. PubMed ID: 35717828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing the RPE-Clamp model to examine interactions among factors associated with perceived fatigability and performance fatigability in women and men.
    Smith RW; Housh TJ; Arnett JE; Anders JPV; Neltner TJ; Ortega DG; Schmidt RJ; Johnson GO
    Eur J Appl Physiol; 2023 Jun; 123(6):1397-1409. PubMed ID: 36856798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forearm blood flow responses to fatiguing isometric contractions in women and men.
    Thompson BC; Fadia T; Pincivero DM; Scheuermann BW
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H805-12. PubMed ID: 17468333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contraction intensity and sex differences in knee-extensor fatigability.
    Ansdell P; Thomas K; Howatson G; Hunter S; Goodall S
    J Electromyogr Kinesiol; 2017 Dec; 37():68-74. PubMed ID: 28963937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex differences in the intensity-duration relationships of the severe- and extreme-intensity exercise domains.
    Alexander AM; Hurla LM; Didier KD; Hammer SM; Rollins KS; Barstow TJ
    Eur J Sport Sci; 2023 Nov; 23(11):2221-2231. PubMed ID: 37199235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of aging on sex differences in muscle fatigability.
    Hunter SK; Critchlow A; Enoka RM
    J Appl Physiol (1985); 2004 Nov; 97(5):1723-32. PubMed ID: 15208285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults.
    Sundberg CW; Kuplic A; Hassanlouei H; Hunter SK
    J Appl Physiol (1985); 2018 Jul; 125(1):146-158. PubMed ID: 29494293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex differences in fatigability following exercise normalised to the power-duration relationship.
    Ansdell P; Škarabot J; Atkinson E; Corden S; Tygart A; Hicks KM; Thomas K; Hunter SK; Howatson G; Goodall S
    J Physiol; 2020 Dec; 598(24):5717-5737. PubMed ID: 32964441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences with aging in the fatigability of dynamic contractions.
    Yoon T; Doyel R; Widule C; Hunter SK
    Exp Gerontol; 2015 Oct; 70():1-10. PubMed ID: 26159162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions.
    Hunter SK; Butler JE; Todd G; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2006 Oct; 101(4):1036-44. PubMed ID: 16728525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction.
    Hunter SK; Griffith EE; Schlachter KM; Kufahl TD
    Muscle Nerve; 2009 Jan; 39(1):42-53. PubMed ID: 19086076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex-related differences in maximal rate of isometric torque development.
    Inglis JG; Vandenboom R; Gabriel DA
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1289-94. PubMed ID: 24148962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.