These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 37889293)
1. Tld1 is a regulator of triglyceride lipolysis that demarcates a lipid droplet subpopulation. Speer NO; Braun RJ; Reynolds EG; Brudnicka A; Swanson JMJ; Henne WM J Cell Biol; 2024 Jan; 223(1):. PubMed ID: 37889293 [TBL] [Abstract][Full Text] [Related]
2. Tld1 is a novel regulator of triglyceride lipolysis that demarcates a lipid droplet subpopulation. Speer NO; Braun RJ; Reynolds E; Brudnicka A; Swanson J; Henne WM bioRxiv; 2023 Sep; ():. PubMed ID: 36945645 [TBL] [Abstract][Full Text] [Related]
3. Triglyceride lipolysis triggers liquid crystalline phases in lipid droplets and alters the LD proteome. Rogers S; Gui L; Kovalenko A; Zoni V; Carpentier M; Ramji K; Ben Mbarek K; Bacle A; Fuchs P; Campomanes P; Reetz E; Speer NO; Reynolds E; Thiam AR; Vanni S; Nicastro D; Henne WM J Cell Biol; 2022 Nov; 221(11):. PubMed ID: 36112368 [TBL] [Abstract][Full Text] [Related]
4. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Wilfling F; Thiam AR; Olarte MJ; Wang J; Beck R; Gould TJ; Allgeyer ES; Pincet F; Bewersdorf J; Farese RV; Walther TC Elife; 2014; 3():e01607. PubMed ID: 24497546 [TBL] [Abstract][Full Text] [Related]
5. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. Camus G; Schweiger M; Herker E; Harris C; Kondratowicz AS; Tsou CL; Farese RV; Herath K; Previs SF; Roddy TP; Pinto S; Zechner R; Ott M J Biol Chem; 2014 Dec; 289(52):35770-80. PubMed ID: 25381252 [TBL] [Abstract][Full Text] [Related]
6. Molecular determinants of lipid droplet subpopulations and their fates. Henne WM FEBS Lett; 2024 May; 598(10):1199-1204. PubMed ID: 38664338 [TBL] [Abstract][Full Text] [Related]
7. A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis. Maeda Y; Oku M; Sakai Y Autophagy; 2015; 11(8):1247-58. PubMed ID: 26061644 [TBL] [Abstract][Full Text] [Related]
8. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. Currie E; Guo X; Christiano R; Chitraju C; Kory N; Harrison K; Haas J; Walther TC; Farese RV J Lipid Res; 2014 Jul; 55(7):1465-77. PubMed ID: 24868093 [TBL] [Abstract][Full Text] [Related]
9. Identification of motifs and mechanisms for lipid droplet targeting of the lipolytic inhibitors G0S2 and HIG2. Campbell LE; Anderson AM; Chen Y; Johnson SM; McMahon CE; Liu J J Cell Sci; 2022 Dec; 135(24):. PubMed ID: 36420951 [TBL] [Abstract][Full Text] [Related]
10. Decoration of myocellular lipid droplets with perilipins as a marker for in vivo lipid droplet dynamics: A super-resolution microscopy study in trained athletes and insulin resistant individuals. Gemmink A; Daemen S; Brouwers B; Hoeks J; Schaart G; Knoops K; Schrauwen P; Hesselink MKC Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Feb; 1866(2):158852. PubMed ID: 33160079 [TBL] [Abstract][Full Text] [Related]
11. Hormone-sensitive lipase preferentially redistributes to lipid droplets associated with perilipin-5 in human skeletal muscle during moderate-intensity exercise. Whytock KL; Shepherd SO; Wagenmakers AJM; Strauss JA J Physiol; 2018 Jun; 596(11):2077-2090. PubMed ID: 29527681 [TBL] [Abstract][Full Text] [Related]
12. Active autophagy but not lipophagy in macrophages with defective lipolysis. Goeritzer M; Vujic N; Schlager S; Chandak PG; Korbelius M; Gottschalk B; Leopold C; Obrowsky S; Rainer S; Doddapattar P; Aflaki E; Wegscheider M; Sachdev V; Graier WF; Kolb D; Radovic B; Kratky D Biochim Biophys Acta; 2015 Oct; 1851(10):1304-1316. PubMed ID: 26143381 [TBL] [Abstract][Full Text] [Related]