These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37889451)

  • 1. Physicochemical and sequence determinants of antiviral peptides.
    Nath A
    Biol Futur; 2023 Dec; 74(4):489-506. PubMed ID: 37889451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model.
    Akbar S; Raza A; Zou Q
    BMC Bioinformatics; 2024 Mar; 25(1):102. PubMed ID: 38454333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance.
    Chowdhury AS; Reehl SM; Kehn-Hall K; Bishop B; Webb-Robertson BM
    Sci Rep; 2020 Nov; 10(1):19260. PubMed ID: 33159146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction for understanding the effectiveness of antiviral peptides.
    Nath A
    Comput Biol Chem; 2021 Dec; 95():107588. PubMed ID: 34655913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses.
    Sukmarini L
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35565968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches.
    Pang Y; Yao L; Jhong JH; Wang Z; Lee TY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34279599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides.
    Lefin N; Herrera-Belén L; Farias JG; Beltrán JF
    Mol Divers; 2024 Aug; 28(4):2365-2374. PubMed ID: 37626205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses.
    Cao R; Hu W; Wei P; Ding Y; Bin Y; Zheng C
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides.
    Hasegawa K; Moriwaki Y; Terada T; Wei C; Shimizu K
    J Bioinform Comput Biol; 2022 Dec; 20(6):2250026. PubMed ID: 36514872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AVPpred: collection and prediction of highly effective antiviral peptides.
    Thakur N; Qureshi A; Kumar M
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W199-204. PubMed ID: 22638580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy.
    Guan J; Yao L; Xie P; Chung CR; Huang Y; Chiang YC; Lee TY
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural antimicrobial peptides as a source of new antiviral agents.
    Zakaryan H; Chilingaryan G; Arabyan E; Serobian A; Wang G
    J Gen Virol; 2021 Sep; 102(9):. PubMed ID: 34554085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response.
    Feng M; Fei S; Xia J; Labropoulou V; Swevers L; Sun J
    Front Immunol; 2020; 11():2030. PubMed ID: 32983149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteochemometric Method for pIC50 Prediction of Flaviviridae.
    Singh D; Mahadik A; Surana S; Arora P
    Biomed Res Int; 2022; 2022():7901791. PubMed ID: 36158882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-AVPpred: Artificial Intelligence Driven Discovery of Peptide Drugs for Viral Infections.
    Sharma R; Shrivastava S; Singh SK; Kumar A; Singh AK; Saxena S
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5067-5074. PubMed ID: 34822333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Overview of Antiviral Peptides and Rational Biodesign Considerations.
    Lee YJ; Shirkey JD; Park J; Bisht K; Cowan AJ
    Biodes Res; 2022; 2022():9898241. PubMed ID: 37850133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses.
    Jesús T; Rogelio L; Abraham C; Uriel L; J-Daniel G; Alfonso MT; Lilia BB
    Bioinformation; 2012; 8(18):870-4. PubMed ID: 23144542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review.
    Charoenkwan P; Anuwongcharoen N; Nantasenamat C; Hasan MM; Shoombuatong W
    Curr Pharm Des; 2021; 27(18):2180-2188. PubMed ID: 33138759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of natural antimicrobial peptides mimetic to inhibit Ca
    Asseri AH; Islam MR; Alghamdi RM; Altayb HN
    J Bioenerg Biomembr; 2024 Apr; 56(2):125-139. PubMed ID: 38095733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.