These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37889475)

  • 1. Nonequilibrium interactions between multi-scale colloids regulate the suspension microstructure and rheology.
    Xu Y; Takatori SC
    Soft Matter; 2023 Nov; 19(44):8531-8541. PubMed ID: 37889475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a flow-dependent phase-stability criterion: Osmotic pressure in sticky flowing suspensions.
    Huang DE; Zia RN
    J Chem Phys; 2021 Oct; 155(13):134113. PubMed ID: 34624990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium depletion interactions in active microrheology.
    Wulfert R; Seifert U; Speck T
    Soft Matter; 2017 Dec; 13(48):9093-9102. PubMed ID: 29072752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium condensation and coarsening of field-driven dipolar colloids.
    Jäger S; Schmidle H; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011402. PubMed ID: 23005412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic interfaces for contact-time control of colloidal interactions.
    Xu Y; Choi KH; Nagella SG; Takatori SC
    Soft Matter; 2023 Aug; 19(30):5692-5700. PubMed ID: 37409349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sticky-probe active microrheology: Part 2. The influence of attractions on non-Newtonian flow.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2020 Mar; 562():293-306. PubMed ID: 31841889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions in particle-based simulations inspired by dynamical density functional theory.
    Jabeen Z; Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev E; 2018 Oct; 98(4):. PubMed ID: 30687804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium pattern formation in strongly interacting driven colloids.
    Löwen H; Dzubiella J
    Faraday Discuss; 2003; 123():99-105; discussion 173-92, 419-21. PubMed ID: 12638856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial colloidal crystallization via tunable hydrogel depletants.
    Fernandes GE; Beltran-Villegas DJ; Bevan MA
    Langmuir; 2008 Oct; 24(19):10776-85. PubMed ID: 18774826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear microrheology: bulk stresses versus direct interactions.
    Squires TM
    Langmuir; 2008 Feb; 24(4):1147-59. PubMed ID: 18154310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheology and dynamics of colloidal superballs.
    Royer JR; Burton GL; Blair DL; Hudson SD
    Soft Matter; 2015 Jul; 11(28):5656-65. PubMed ID: 26078036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microrheological consequences of attractive colloid-colloid potentials in a two-dimensional Brownian fluid.
    Domínguez-García P
    Eur Phys J E Soft Matter; 2012 Aug; 35(8):73. PubMed ID: 22898939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superadiabatic dynamical density functional theory for colloidal suspensions under homogeneous steady-shear.
    Tschopp SM; Brader JM
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38842084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and rheological behavior of highly charged colloidal particles in a cylindrical pore I. Effect of pore size.
    Valdez MA; Gámez-Corrales R
    J Colloid Interface Sci; 2003 Nov; 267(1):233-42. PubMed ID: 14554189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.