These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37889824)

  • 1. A Robust Initialization of Residual Blocks for Effective ResNet Training Without Batch Normalization.
    Civitelli E; Sortino A; Lapucci M; Bagattini F; Galvan G
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37889824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training Faster by Separating Modes of Variation in Batch-Normalized Models.
    Kalayeh MM; Shah M
    IEEE Trans Pattern Anal Mach Intell; 2020 Jun; 42(6):1483-1500. PubMed ID: 30703010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiking Deep Residual Networks.
    Hu Y; Tang H; Pan G
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):5200-5205. PubMed ID: 34723807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Residual Network based on norm-preservation for visual recognition.
    Mahaur B; Mishra KK; Singh N
    Neural Netw; 2023 Jan; 157():305-322. PubMed ID: 36375348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ResDNet: Efficient Dense Multi-Scale Representations With Residual Learning for High-Level Vision Tasks.
    Hong Y; Pan H; Jia Y; Sun W; Gao H
    IEEE Trans Neural Netw Learn Syst; 2022 May; PP():. PubMed ID: 35533173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comprehensive and Modularized Statistical Framework for Gradient Norm Equality in Deep Neural Networks.
    Chen Z; Deng L; Wang B; Li G; Xie Y
    IEEE Trans Pattern Anal Mach Intell; 2022 Jan; 44(1):13-31. PubMed ID: 32750821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking Deep Learning Models for Tooth Structure Segmentation.
    Schneider L; Arsiwala-Scheppach L; Krois J; Meyer-Lueckel H; Bressem KK; Niehues SM; Schwendicke F
    J Dent Res; 2022 Oct; 101(11):1343-1349. PubMed ID: 35686357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate deep neural network inference using computational phase-change memory.
    Joshi V; Le Gallo M; Haefeli S; Boybat I; Nandakumar SR; Piveteau C; Dazzi M; Rajendran B; Sebastian A; Eleftheriou E
    Nat Commun; 2020 May; 11(1):2473. PubMed ID: 32424184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BlockQNN: Efficient Block-Wise Neural Network Architecture Generation.
    Zhong Z; Yang Z; Deng B; Yan J; Wu W; Shao J; Liu CL
    IEEE Trans Pattern Anal Mach Intell; 2021 Jul; 43(7):2314-2328. PubMed ID: 31985407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Skip Connections-Based Residual Network (ESRNet) for Brain Tumor Classification.
    B A; Kaur M; Singh D; Roy S; Amoon M
    Diagnostics (Basel); 2023 Oct; 13(20):. PubMed ID: 37892055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct training high-performance spiking neural networks for object recognition and detection.
    Zhang H; Li Y; He B; Fan X; Wang Y; Zhang Y
    Front Neurosci; 2023; 17():1229951. PubMed ID: 37614339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing Spiking Neural Networks Toward Deep Residual Learning.
    Hu Y; Deng L; Wu Y; Yao M; Li G
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38329859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex hybrid weighted pruning method for accelerating convolutional neural networks.
    Geng X; Gao J; Zhang Y; Xu D
    Sci Rep; 2024 Mar; 14(1):5570. PubMed ID: 38448451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.
    Sengupta A; Ye Y; Wang R; Liu C; Roy K
    Front Neurosci; 2019; 13():95. PubMed ID: 30899212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-way backpropagation for training compact deep neural networks.
    Guo Y; Chen J; Du Q; Van Den Hengel A; Shi Q; Tan M
    Neural Netw; 2020 Jun; 126():250-261. PubMed ID: 32272429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking ImageNet Pre-training for Computational Histopathology.
    Ray I; Raipuria G; Singhal N
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3059-3062. PubMed ID: 36086630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partially-Connected Neural Architecture Search for Reduced Computational Redundancy.
    Xu Y; Xie L; Dai W; Zhang X; Chen X; Qi GJ; Xiong H; Tian Q
    IEEE Trans Pattern Anal Mach Intell; 2021 Sep; 43(9):2953-2970. PubMed ID: 33591909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norm-Preservation: Why Residual Networks Can Become Extremely Deep?
    Zaeemzadeh A; Rahnavard N; Shah M
    IEEE Trans Pattern Anal Mach Intell; 2021 Nov; 43(11):3980-3990. PubMed ID: 32340937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EAR-UNet: A deep learning-based approach for segmentation of tympanic membranes from otoscopic images.
    Pham VT; Tran TT; Wang PC; Chen PY; Lo MT
    Artif Intell Med; 2021 May; 115():102065. PubMed ID: 34001323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deeply Supervised Block-Wise Neural Architecture Search.
    Yang A; Liu Y; Li C; Ren Q
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38231812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.