These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37890098)

  • 1. Repeated Low-level Red-light Therapy: The Next Wave in Myopia Management?
    Salzano AD; Khanal S; Cheung NL; Weise KK; Jenewein EC; Horn DM; Mutti DO; Gawne TJ
    Optom Vis Sci; 2023 Dec; 100(12):812-822. PubMed ID: 37890098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of ambient narrowband long-wavelength light on lens-induced myopia and form-deprivation myopia in tree shrews.
    She Z; Ward AH; Gawne TJ
    Exp Eye Res; 2023 Sep; 234():109593. PubMed ID: 37482282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binocular lens treatment in tree shrews: Effect of age and comparison of plus lens wear with recovery from minus lens-induced myopia.
    Siegwart JT; Norton TT
    Exp Eye Res; 2010 Nov; 91(5):660-9. PubMed ID: 20713041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amber light treatment produces hyperopia in tree shrews.
    Khanal S; Norton TT; Gawne TJ
    Ophthalmic Physiol Opt; 2021 Sep; 41(5):1076-1086. PubMed ID: 34382245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys.
    Hung LF; Arumugam B; She Z; Ostrin L; Smith EL
    Exp Eye Res; 2018 Nov; 176():147-160. PubMed ID: 29981345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews.
    Gawne TJ; Ward AH; Norton TT
    Vision Res; 2017 Nov; 140():55-65. PubMed ID: 28801261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited bandwidth short-wavelength light produces slowly-developing myopia in tree shrews similar to human juvenile-onset myopia.
    Khanal S; Norton TT; Gawne TJ
    Vision Res; 2023 Mar; 204():108161. PubMed ID: 36529048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews.
    Gawne TJ; Siegwart JT; Ward AH; Norton TT
    Exp Eye Res; 2017 Feb; 155():75-84. PubMed ID: 27979713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of daily transient +4 D positive lens wear on the inhibition of myopia in the tree shrew.
    McBrien NA; Arumugam B; Metlapally S
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1593-601. PubMed ID: 22323488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatically simulated myopic blur counteracts a myopiagenic environment.
    Gawne TJ; She Z; Norton TT
    Exp Eye Res; 2022 Sep; 222():109187. PubMed ID: 35843288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial.
    Jiang Y; Zhu Z; Tan X; Kong X; Zhong H; Zhang J; Xiong R; Yuan Y; Zeng J; Morgan IG; He M
    Ophthalmology; 2022 May; 129(5):509-519. PubMed ID: 34863776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refractive plasticity of the developing chick eye: a summary and update.
    Irving EL; Sivak JG; Callender MG
    Ophthalmic Physiol Opt; 2015 Nov; 35(6):600-6. PubMed ID: 26497292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-Wavelength (Violet) Light Protects Mice From Myopia Through Cone Signaling.
    Strickland R; Landis EG; Pardue MT
    Invest Ophthalmol Vis Sci; 2020 Feb; 61(2):13. PubMed ID: 32049342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hyperopic effect of narrow-band long-wavelength light in tree shrews increases non-linearly with duration.
    Ward AH; Norton TT; Huisingh CE; Gawne TJ
    Vision Res; 2018 May; 146-147():9-17. PubMed ID: 29655781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light.
    Foulds WS; Barathi VA; Luu CD
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8004-12. PubMed ID: 24222304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eyes of a lower vertebrate are susceptible to the visual environment.
    Shen W; Sivak JG
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4829-37. PubMed ID: 17898310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular growth and metabolomics are dependent upon the spectral content of ambient white light.
    Najjar RP; Chao De La Barca JM; Barathi VA; Ho CEH; Lock JZ; Muralidharan AR; Tan RKY; Dhand C; Lakshminarayanan R; Reynier P; Milea D
    Sci Rep; 2021 Apr; 11(1):7586. PubMed ID: 33828194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained and rebound effect of repeated low-level red-light therapy on myopia control: A 2-year post-trial follow-up study.
    Xiong R; Zhu Z; Jiang Y; Kong X; Zhang J; Wang W; Kiburg K; Yuan Y; Chen Y; Zhang S; Xuan M; Zeng J; Morgan IG; He M
    Clin Exp Ophthalmol; 2022 Dec; 50(9):1013-1024. PubMed ID: 36054314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phakic intraocular lenses for the treatment of refractive errors: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2009; 9(14):1-120. PubMed ID: 23074518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The M1 muscarinic antagonist pirenzepine reduces myopia and eye enlargement in the tree shrew.
    Cottriall CL; McBrien NA
    Invest Ophthalmol Vis Sci; 1996 Jun; 37(7):1368-79. PubMed ID: 8641840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.